852 resultados para Prefrontal Cortex
Resumo:
Despite immense efforts into development of new antidepressant drugs, the increases of serotoninergic and catecholaminergic neurotransmission have remained the two major pharmacodynamic principles of current drug treatments for depression. Consequently, psychopathological or biological markers that predict response to drugs that selectively increase serotonin and/or catecholamine neurotransmission hold the potential to optimize the prescriber's selection among currently available treatment options. The aim of this study was to elucidate the differential symptomatology and neurophysiology in response to reductions in serotonergic versus catecholaminergic neurotransmission in subjects at high risk of depression recurrence. Using identical neuroimaging procedures with [(18)F] fluorodeoxyglucose positron emission tomography after tryptophan depletion (TD) and catecholamine depletion (CD), subjects with remitted depression were compared with healthy controls in a double-blind, randomized, crossover design. Although TD induced significantly more depressed mood, sadness and hopelessness than CD, CD induced more inactivity, concentration difficulties, lassitude and somatic anxiety than TD. CD specifically increased glucose metabolism in the bilateral ventral striatum and decreased glucose metabolism in the bilateral orbitofrontal cortex, whereas TD specifically increased metabolism in the right prefrontal cortex and the posterior cingulate cortex. Although we found direct associations between changes in brain metabolism and induced depressive symptoms following CD, the relationship between neural activity and symptoms was less clear after TD. In conclusion, this study showed that serotonin and catecholamines have common and differential roles in the pathophysiology of depression.
Resumo:
AIM To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. METHODS Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. RESULTS Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. CONCLUSION Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.
Resumo:
In the present paper, we describe new robust methods of estimating cell shape and orientation in 3D from sections. The descriptors of 3D cell shape and orientation are based on volume tensors which are used to construct an ellipsoid, the Miles ellipsoid, approximating the average cell shape and orientation in 3D. The estimators of volume tensors are based on observations in several optical planes through sampled cells. This type of geometric sampling design is known as the optical rotator. The statistical behaviour of the estimator of the Miles ellipsoid is studied under a flexible model for 3D cell shape and orientation. In a simulation study, the lengths of the axes of the Miles ellipsoid can be estimated with CVs of about 2% if 100 cells are sampled. Finally, we illustrate the use of the developed methods in an example, involving neurons in the medial prefrontal cortex of rat.
Resumo:
The purpose of this review is to investigate how transcranial direct current stimulation(tDCS)can modulate implicit motor sequence learning and consolidation. So far, most of the studies have focused on the modulating effect of tDCS for explicit motor learning. Here, we focus explicitly on implicit motor sequence learning and consolidation in order to improve our understanding about the potential of tDCS to affect this kind of unconscious learning. Specifically, we concentrate on studies with the serial reaction time task (SRTT), the classical paradigm for measuring implicit motor sequence learning. The influence of tDCS has been investigated for the primary motor cortex, the premotor cortex, the prefrontal cortex, and the cerebellum. The results indicate that tDCS above the primary motor cortex gives raise to the most consistent modulating effects for both implicit motor sequence learning and consolidation.
Resumo:
In comparison to the basal ganglia, prefrontal cortex, and medial temporal lobes, the cerebellum has been absent from recent research on the neural substrates of categorization and identification, two prominent tasks in the learning and memory literature. To investigate the contribution of the cerebellum to these tasks, we tested patients with cerebellar pathology (seven with bilateral degeneration, six with unilateral lesions, and two with midline damage) on rule-based and information-integration categorization tasks and an identification task. In rule-based tasks, it is assumed that participants learn the categories through an explicit reasoning process. In information-integration tasks, optimal performance requires the integration of information from multiple stimulus dimensions, and participants are typically unaware of the decision strategy. The identification task, in contrast, required participants to learn arbitrary, color-word associations. The cerebellar patients performed similar to matched controls on all three tasks and performance did not vary with the extent of cerebellar pathology. Although the interpretation of these null results requires caution, these data contribute to the current debate on cerebellar contributions to cognition by providing boundary conditions on understanding the neural substrates of categorization and identification, and help define the functional domain of the cerebellum in learning and memory.
Resumo:
While it is commonly assumed that brain systems receive and process information from other brain systems, there are few examples of tractable behaviors that allow such interactions to be studied. With the experiments presented in this dissertation we provide evidence that trace eyelid conditioning, a simple form of associative learning, is mediated by cerebellar learning in response to the output of persistent neural activity in the prefrontal cortex (PFC) and thus may be useful in analyses of PFC-cerebellar interactions. In a series of stimulation and reversible inactivation experiments we provide evidence that trace eyelid conditioning is mediated by cerebellar learning in response to a learned forebrain-driven input. Specifically, we provide evidence that this input is driven by the medial PFC and persists through the stimulus free trace interval of trace eyelid conditioning. In the next set of experiments we show that directly presenting the cerebellum with a pattern of input that mimics the classic persistent activity of PFC neurons reconstitutes trace eyelid conditioning, as assessed by a number of stringent tests. Finally, in set of reversible inactivation experiments, we provide evidence that bidirectional learning during trace eyelid conditioning involves the omission of the persistent, PFC-driven input that the cerebellum learns and responds to during trace eyelid conditioning. Given that persistent activity in PFC is often associated with working memory, these experiments suggest that trace eyelid conditioning may be useful in analyses of working memory mechanisms, cerebellar information processing and their interaction. To facilitate future analyses, we conclude with a working hypothesis of forebrain-cerebellum interactions during trace eyelid conditioning that addresses how persistent activity in PFC is induced and how the cerebellum decodes and uses PFC-driven input. ^
Resumo:
Fixation-off sensitivity (FOS) denotes the forms of EEG abnormalities, which are elicited by elimination of central vision or fixation. The phenomenon seems to depend on variables that modulate the alpha rhythm, however, the cerebral mechanisms underlying FOS remain unclear [1]. The scarce previous fMRI findings related to FOS have shown activation in extrastriate cortex [2] and also in frontal areas [3][4]. On the other hand, simultaneous EEG-fMRI technique has been used to assess the relationship between spontaneous power fluctuations of electrical rhythms and associated fMRI signal modulations. These studies have identified that lateral frontoparietal networks show a negative correlation with alpha band in healthy subjects. This neuroanatomical pattern is related to attentional processes and cognitive resources. Moreover, a sub-beta band (17-23 Hz) has been identified with posterior cingulate, temporoparietal junction and dorso-medial prefrontal cortex activations, which correspond to the DMN [5][6].
Resumo:
There is considerable evidence from animal studies that gonadal steroid hormones modulate neuronal activity and affect behavior. To study this in humans directly, we used H215O positron-emission tomography to measure regional cerebral blood flow (rCBF) in young women during three pharmacologically controlled hormonal conditions spanning 4–5 months: ovarian suppression induced by the gonadotropin-releasing hormone agonist leuprolide acetate (Lupron), Lupron plus estradiol replacement, and Lupron plus progesterone replacement. Estradiol and progesterone were administered in a double-blind cross-over design. On each occasion positron-emission tomography scans were performed during (i) the Wisconsin Card Sorting Test, a neuropsychological test that physiologically activates prefrontal cortex (PFC) and an associated cortical network including inferior parietal lobule and posterior inferolateral temporal gyrus, and (ii) a no-delay matching-to-sample sensorimotor control task. During treatment with Lupron alone (i.e., with virtual absence of gonadal steroid hormones), there was marked attenuation of the typical Wisconsin Card Sorting Test activation pattern even though task performance did not change. Most strikingly, there was no rCBF increase in PFC. When either progesterone or estrogen was added to the Lupron regimen, there was normalization of the rCBF activation pattern with augmentation of the parietal and temporal foci and return of the dorsolateral PFC activation. These data directly demonstrate that the hormonal milieu modulates cognition-related neural activity in humans.
Resumo:
We used event-related functional MRI to investigate the neural bases of two categories of mental processes believed to contribute to performance of an alphabetization working memory task: memory storage and memory manipulation. Our delayed-response tasks required memory for the identity and position-in-the-display of items in two- or five-letter memory sets (to identify load-sensitive regions) or memory for the identity and relative position-in-the-alphabet of items in five-letter memory sets (to identify manipulation-sensitive regions). Results revealed voxels in the left perisylvian cortex of five of five subjects showing load sensitivity (as contrasted with alphabetization-sensitive voxels in this region in only one subject) and voxels of dorsolateral prefrontal cortex in all subjects showing alphabetization sensitivity (as contrasted with load-sensitive voxels in this region in two subjects). This double dissociation was reliable at the group level. These data are consistent with the hypothesis that the nonmnemonic executive control processes that can contribute to working memory function are primarily prefrontal cortex-mediated whereas mnemonic processes necessary for working memory storage are primarily posteriorly mediated. More broadly, they support the view that working memory is a faculty that arises from the coordinated interaction of computationally and neuroanatomically dissociable processes.
Resumo:
Antipsychotic drug treatment of schizophrenia may be complicated by side effects of widespread dopaminergic antagonism, including exacerbation of negative and cognitive symptoms due to frontal cortical hypodopaminergia. Atypical antipsychotics have been shown to enhance frontal dopaminergic activity in animal models. We predicted that substitution of risperidone for typical antipsychotic drugs in the treatment of schizophrenia would be associated with enhanced functional activation of frontal cortex. We measured cerebral blood oxygenation changes during periodic performance of a verbal working memory task, using functional MRI, on two occasions (baseline and 6 weeks later) in two cohorts of schizophrenic patients. One cohort (n = 10) was treated with typical antipsychotic drugs throughout the study. Risperidone was substituted for typical antipsychotics after baseline assessment in the second cohort (n = 10). A matched group of healthy volunteers (n = 10) was also studied on a single occasion. A network comprising bilateral dorsolateral prefrontal and lateral premotor cortex, the supplementary motor area, and posterior parietal cortex was activated by working memory task performance in both the patients and comparison subjects. A two-way analysis of covariance was used to estimate the effect of substituting risperidone for typical antipsychotics on power of functional response in the patient group. Substitution of risperidone increased functional activation in right prefrontal cortex, supplementary motor area, and posterior parietal cortex at both voxel and regional levels of analysis. This study provides direct evidence for significantly enhanced frontal function in schizophrenic patients after substitution of risperidone for typical antipsychotic drugs, and it indicates the potential value of functional MRI as a tool for longitudinal assessment of psychopharmacological effects on cerebral physiology.
Resumo:
Planning a goal-directed sequence of behavior is a higher function of the human brain that relies on the integrity of prefrontal cortical areas. In the Tower of London test, a puzzle in which beads sliding on pegs must be moved to match a designated goal configuration, patients with lesioned prefrontal cortex show deficits in planning a goal-directed sequence of moves. We propose a neuronal network model of sequence planning that passes this test and, when lesioned, fails in a way that mimics prefrontal patients’ behavior. Our model comprises a descending planning system with hierarchically organized plan, operation, and gesture levels, and an ascending evaluative system that analyzes the problem and computes internal reward signals that index the correct/erroneous status of the plan. Multiple parallel pathways connecting the evaluative and planning systems amend the plan and adapt it to the current problem. The model illustrates how specialized hierarchically organized neuronal assemblies may collectively emulate central executive or supervisory functions of the human brain.
Resumo:
A minimal hypothesis is proposed concerning the brain processes underlying effortful tasks. It distinguishes two main computational spaces: a unique global workspace composed of distributed and heavily interconnected neurons with long-range axons, and a set of specialized and modular perceptual, motor, memory, evaluative, and attentional processors. Workspace neurons are mobilized in effortful tasks for which the specialized processors do not suffice. They selectively mobilize or suppress, through descending connections, the contribution of specific processor neurons. In the course of task performance, workspace neurons become spontaneously coactivated, forming discrete though variable spatio-temporal patterns subject to modulation by vigilance signals and to selection by reward signals. A computer simulation of the Stroop task shows workspace activation to increase during acquisition of a novel task, effortful execution, and after errors. We outline predictions for spatio-temporal activation patterns during brain imaging, particularly about the contribution of dorsolateral prefrontal cortex and anterior cingulate to the workspace.
Resumo:
Pregnenolone sulfate (PREG S) is synthesized in the nervous system and is a major neurosteroid in the rat brain. Its concentrations were measured in the hippocampus and other brain areas of single adult and aged (22–24 month-old) male Sprague–Dawley rats. Significantly lower levels were found in aged rats, although the values were widely scattered and reached, in about half the animals, the same range as those of young ones. The spatial memory performances of aged rats were investigated in two different spatial memory tasks, the Morris water maze and Y-maze. Performances in both tests were significantly correlated and, accompanied by appropriate controls, likely evaluated genuine memory function. Importantly, individual hippocampal PREG S and distance to reach the platform in the water maze were linked by a significant correlation, i.e., those rats with lower memory deficit had the highest PREG S levels, whereas no relationship was found with the PREG S content in other brain areas (amygdala, prefrontal cortex, parietal cortex, striatum). Moreover, the memory deficit of cognitively impaired aged rats was transiently corrected after either intraperitoneal or bilateral intrahippocampal injection of PREG S. PREG S is both a γ-aminobutyric acid antagonist and a positive allosteric modulator at the N-methyl-d-aspartate receptor, and may reinforce neurotransmitter system(s) that decline with age. Indeed, intracerebroventricular injection of PREG S was shown to stimulate acetylcholine release in the adult rat hippocampus. In conclusion, it is proposed that the hippocampal content of PREG S plays a physiological role in preserving and/or enhancing cognitive abilities in old animals, possibly via an interaction with central cholinergic systems. Thus, neurosteroids should be further studied in the context of prevention and/or treatment of age-related memory disorders.
Resumo:
What are the neural bases of semantic memory? Traditional beliefs that the temporal lobes subserve the retrieval of semantic knowledge, arising from lesion studies, have been recently called into question by functional neuroimaging studies finding correlations between semantic retrieval and activity in left prefrontal cortex. Has neuroimaging taught us something new about the neural bases of cognition that older methods could not reveal or has it merely identified brain activity that is correlated with but not causally related to the process of semantic retrieval? We examined the ability of patients with focal frontal lesions to perform a task commonly used in neuroimaging experiments, the generation of semantically appropriate action words for concrete nouns, and found evidence of the necessity of the left inferior frontal gyrus for certain components of the verb generation task. Notably, these components did not include semantic retrieval per se.
Resumo:
The conditioning of cocaine's subjective actions with environmental stimuli may be a critical factor in long-lasting relapse risk associated with cocaine addiction. To study the significance of learning factors in persistent addictive behavior as well as the neurobiological basis of this phenomenon, rats were trained to associate discriminative stimuli (SD) with the availability of i.v. cocaine vs. nonrewarding saline solution, and then placed on extinction conditions during which the i.v. solutions and SDs were withheld. The effects of reexposure to the SD on the recovery of responding at the previously cocaine-paired lever and on Fos protein expression then were determined in two groups. One group was tested immediately after extinction, whereas rats in the second group were confined to their home cages for an additional 4 months before testing. In both groups, the cocaine SD, but not the non-reward SD, elicited strong recovery of responding and increased Fos immunoreactivity in the basolateral amygdala and medial prefrontal cortex (areas Cg1/Cg3). The response reinstatement and Fos expression induced by the cocaine SD were both reversed by selective dopamine D1 receptor antagonists. The undiminished efficacy of the cocaine SD to elicit drug-seeking behavior after 4 months of abstinence parallels the long-lasting nature of conditioned cue reactivity and cue-induced cocaine craving in humans, and confirms a significant role of learning factors in the long-lasting addictive potential of cocaine. Moreover, the results implicate D1-dependent neural mechanisms within the medial prefrontal cortex and basolateral amygdala as substrates for cocaine-seeking behavior elicited by cocaine-predictive environmental stimuli.