941 resultados para Predictive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of the study is to examine the distribution of integrated covariate and its association with blood pressure (BP) among children in Anhui province, China, and assess the predictive value of integrated covariate to children hypertension. Methods: A total of 2,828 subjects (1,588 male and 1,240 female) aged 7-17 years participated in this study. Height, weight, waistline, hipline and BP of all subjects were measured, obesity and overweight were defined by an international standard, specifying the measurement, the reference population, and the age and sex specific cut off points. High BP status was defined as systolic blood pressure (SBP) and/or diastolic blood pressure (DBP) > 95th percentile for age and gender. Results: Our results revealed that the prevalence of children hypertension was 11.03%, the SBP and DBP of obesity group were significantly higher than that of normal group. Anthropometric obesity indices such as body mass index (BMI) were positively correlated with SBP and DBP. Integrated covariate had a better performance than the single covariate in the receiver-operating characteristic (ROC) curve, the cut-off value; the sensitivity and the specificity of the integrated covariate were 0.112, 0.577, 0.683, respectively. Conclusion: Integrated covariate is a simple and effective anthropometric index to identify childhood hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supply chains are ubiquitous in any commercial delivery systems. The exchange of goods and services, from different supply points to distinct destinations scattered along a given geographical area, requires the management of stocks and vehicles fleets in order to minimize costs while maintaining good quality services. Even if the operating conditions remain constant over a given time horizon, managing a supply chain is a very complex task. Its complexity increases exponentially with both the number of network nodes and the dynamical operational changes. Moreover, the management system must be adaptive in order to easily cope with several disturbances such as machinery and vehicles breakdowns or changes in demand. This work proposes the use of a model predictive control paradigm in order to tackle the above referred issues. The obtained simulation results suggest that this strategy promotes an easy tasks rescheduling in case of disturbances or anticipated changes in operating conditions. © Springer International Publishing Switzerland 2017

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate key characteristics of Ca²⁺ puffs in deterministic and stochastic frameworks that all incorporate the cellular morphology of IP[subscript]3 receptor channel clusters. In a first step, we numerically study Ca²⁺ liberation in a three dimensional representation of a cluster environment with reaction-diffusion dynamics in both the cytosol and the lumen. These simulations reveal that Ca²⁺ concentrations at a releasing cluster range from 80 µM to 170 µM and equilibrate almost instantaneously on the time scale of the release duration. These highly elevated Ca²⁺ concentrations eliminate Ca²⁺ oscillations in a deterministic model of an IP[subscript]3R channel cluster at physiological parameter values as revealed by a linear stability analysis. The reason lies in the saturation of all feedback processes in the IP[subscript]3R gating dynamics, so that only fluctuations can restore experimentally observed Ca²⁺ oscillations. In this spirit, we derive master equations that allow us to analytically quantify the onset of Ca²⁺ puffs and hence the stochastic time scale of intracellular Ca²⁺ dynamics. Moving up the spatial scale, we suggest to formulate cellular dynamics in terms of waiting time distribution functions. This approach prevents the state space explosion that is typical for the description of cellular dynamics based on channel states and still contains information on molecular fluctuations. We illustrate this method by studying global Ca²⁺ oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the rate of human papillomavirus (HPV) persistence, associated risk factors, and predictors of cytological alteration outcomes in a cohort of human immunodeficiency virus-infected pregnant women over an 18-month period. HPV was typed through L1 gene sequencing in cervical smears collected during gestation and at 12 months after delivery. Outcomes were defined as nonpersistence (clearance of the HPV in the 2nd sample), re-infection (detection of different types of HPV in the 2 samples), and type-specific HPV persistence (the same HPV type found in both samples). An unfavourable cytological outcome was considered when the second exam showed progression to squamous intraepithelial lesion or high squamous intraepithelial lesion. Ninety patients were studied. HPV DNA persistence occurred in 50% of the cases composed of type-specific persistence (30%) or re-infection (20%). A low CD4+ T-cell count at entry was a risk factor for type-specific, re-infection, or HPV DNA persistence. The odds ratio (OR) was almost three times higher in the type-specific group when compared with the re-infection group (OR = 2.8; 95% confidence interval: 0.43-22.79). Our findings show that bonafide (type-specific) HPV persistence is a stronger predictor for the development of cytological abnormalities, highlighting the need for HPV typing as opposed to HPV DNA testing in the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic selection (GS) has been used to compute genomic estimated breeding values (GEBV) of individuals; however, it has only been applied to animal and major plant crops due to high costs. Besides, breeding and selection is performed at the family level in some crops. We aimed to study the implementation of genome-wide family selection (GWFS) in two loblolly pine (Pinus taeda L.) populations: i) the breeding population CCLONES composed of 63 families (5-20 individuals per family), phenotyped for four traits (stem diameter, stem rust susceptibility, tree stiffness and lignin content) and genotyped using an Illumina Infinium assay with 4740 polymorphic SNPs, and ii) a simulated population that reproduced the same pedigree as CCLONES, 5000 polymorphic loci and two traits (oligogenic and polygenic). In both populations, phenotypic and genotypic data was pooled at the family level in silico. Phenotypes were averaged across replicates for all the individuals and allele frequency was computed for each SNP. Marker effects were estimated at the individual (GEBV) and family (GEFV) levels with Bayes-B using the package BGLR in R and models were validated using 10-fold cross validations. Predicted ability, computed by correlating phenotypes with GEBV and GEFV, was always higher for GEFV in both populations, even after standardizing GEFV predictions to be comparable to GEBV. Results revealed great potential for using GWFS in breeding programs that select families, such as most outbreeding forage species. A significant drop in genotyping costs as one sample per family is needed would allow the application of GWFS in minor crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, the interest of the automotive market for hybrid vehicles has increased due to the more restrictive pollutants emissions legislation and to the necessity of decreasing the fossil fuel consumption, since such solution allows a consistent improvement of the vehicle global efficiency. The term hybridization regards the energy flow in the powertrain of a vehicle: a standard vehicle has, usually, only one energy source and one energy tank; instead, a hybrid vehicle has at least two energy sources. In most cases, the prime mover is an internal combustion engine (ICE) while the auxiliary energy source can be mechanical, electrical, pneumatic or hydraulic. It is expected from the control unit of a hybrid vehicle the use of the ICE in high efficiency working zones and to shut it down when it is more convenient, while using the EMG at partial loads and as a fast torque response during transients. However, the battery state of charge may represent a limitation for such a strategy. That’s the reason why, in most cases, energy management strategies are based on the State Of Charge, or SOC, control. Several studies have been conducted on this topic and many different approaches have been illustrated. The purpose of this dissertation is to develop an online (usable on-board) control strategy in which the operating modes are defined using an instantaneous optimization method that minimizes the equivalent fuel consumption of a hybrid electric vehicle. The equivalent fuel consumption is calculated by taking into account the total energy used by the hybrid powertrain during the propulsion phases. The first section presents the hybrid vehicles characteristics. The second chapter describes the global model, with a particular focus on the energy management strategies usable for the supervisory control of such a powertrain. The third chapter shows the performance of the implemented controller on a NEDC cycle compared with the one obtained with the original control strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Model predictive control (MPC) has often been referred to in literature as a potential method for more efficient control of building heating systems. Though a significant performance improvement can be achieved with an MPC strategy, the complexity introduced to the commissioning of the system is often prohibitive. Models are required which can capture the thermodynamic properties of the building with sufficient accuracy for meaningful predictions to be made. Furthermore, a large number of tuning weights may need to be determined to achieve a desired performance. For MPC to become a practicable alternative, these issues must be addressed. Acknowledging the impact of the external environment as well as the interaction of occupants on the thermal behaviour of the building, in this work, techniques have been developed for deriving building models from data in which large, unmeasured disturbances are present. A spatio-temporal filtering process was introduced to determine estimates of the disturbances from measured data, which were then incorporated with metaheuristic search techniques to derive high-order simulation models, capable of replicating the thermal dynamics of a building. While a high-order simulation model allowed for control strategies to be analysed and compared, low-order models were required for use within the MPC strategy itself. The disturbance estimation techniques were adapted for use with system-identification methods to derive such models. MPC formulations were then derived to enable a more straightforward commissioning process and implemented in a validated simulation platform. A prioritised-objective strategy was developed which allowed for the tuning parameters typically associated with an MPC cost function to be omitted from the formulation by separation of the conflicting requirements of comfort satisfaction and energy reduction within a lexicographic framework. The improved ability of the formulation to be set-up and reconfigured in faulted conditions was shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA—disseminated and implemented in over 70 countries globally—is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of heavy–light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseudoscalar, and vector contributions. The numerical calculations are performed in momentum space, where special care is taken to treat the strong singularities present in the confining kernel. The observed meson spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit to a few pseudoscalar meson states only, which are insensitive to spin–orbit and tensor forces and do not allow to separate the spin–spin from the central interaction, leads to essentially the same model parameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is responsible for the very accurate prediction of the spin-dependent quark–antiquark interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the spreading of the air pollution crisis enhanced by greenhouse gases emission is leading to the worsening of the global warming. In this context, the transportation sector plays a vital role, since it is responsible for a large part of carbon dioxide production. In order to address these issues, the present thesis deals with the development of advanced control strategies for the energy efficiency optimization of plug-in hybrid electric vehicles (PHEVs), supported by the prediction of future working conditions of the powertrain. In particular, a Dynamic Programming algorithm has been developed for the combined optimization of vehicle energy and battery thermal management. At this aim, the battery temperature and the battery cooling circuit control signal have been considered as an additional state and control variables, respectively. Moreover, an adaptive equivalent consumption minimization strategy (A-ECMS) has been modified to handle zero-emission zones, where engine propulsion is not allowed. Navigation data represent an essential element in the achievement of these tasks. With this aim, a novel simulation and testing environment has been developed during the PhD research activity, as an effective tool to retrieve routing information from map service providers via vehicle-to-everything connectivity. Comparisons between the developed and the reference strategies are made, as well, in order to assess their impact on the vehicle energy consumption. All the activities presented in this doctoral dissertation have been carried out at the Green Mobility Research Lab} (GMRL), a research center resulting from the partnership between the University of Bologna and FEV Italia s.r.l., which represents the industrial partner of the research project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master thesis work is focused on the development of a predictive EHC control function for a diesel plug-in hybrid electric vehicle equipped with a EURO 7 compliant exhaust aftertreatment system (EATS), with the purpose of showing the advantages provided by the implementation of a predictive control strategy with respect to a rule-based one. A preliminary step will be the definition of an accurate powertrain and EATS physical model, starting from already existing and validated applications. Then, a rule-based control strategy managing the torque split between the electric motor (EM) and the internal combustion engine (ICE) will be developed and calibrated, with the main target of limiting tailpipe NOx emission by taking into account EM and ICE operating conditions together with EATS conversion efficiency. The information available from vehicle connectivity will be used to reconstruct the future driving scenario, also referred to as electronic horizon (eHorizon), and in particular to predict ICE first start. Based on this knowledge, an EATS pre-heating phase can be planned to avoid low pollutant conversion efficiencies, thus preventing high NOx emission due to engine cold start. Consequently, the final NOx emission over the complete driving cycle will be strongly reduced, allowing to comply with the limits potentially set by the incoming EURO 7 regulation. Moreover, given the same NOx emission target, the gain achieved thanks to the implementation of an EHC predictive control function will allow to consider a simplified EATS layout, thus reducing the related manufacturing cost. The promising results achieved in terms of NOx emission reduction show the effectiveness of the application of a predictive control strategy focused on EATS thermal management and highlight the potential of a complete integration and parallel development of involved vehicle physical systems, control software and connectivity data management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, a tube-based Distributed Economic Predictive Control (DEPC) scheme is presented for a group of dynamically coupled linear subsystems. These subsystems are components of a large scale system and control inputs are computed based on optimizing a local economic objective. Each subsystem is interacting with its neighbors by sending its future reference trajectory, at each sampling time. It solves a local optimization problem in parallel, based on the received future reference trajectories of the other subsystems. To ensure recursive feasibility and a performance bound, each subsystem is constrained to not deviate too much from its communicated reference trajectory. This difference between the plan trajectory and the communicated one is interpreted as a disturbance on the local level. Then, to ensure the satisfaction of both state and input constraints, they are tightened by considering explicitly the effect of these local disturbances. The proposed approach averages over all possible disturbances, handles tightened state and input constraints, while satisfies the compatibility constraints to guarantee that the actual trajectory lies within a certain bound in the neighborhood of the reference one. Each subsystem is optimizing a local arbitrary economic objective function in parallel while considering a local terminal constraint to guarantee recursive feasibility. In this framework, economic performance guarantees for a tube-based distributed predictive control (DPC) scheme are developed rigorously. It is presented that the closed-loop nominal subsystem has a robust average performance bound locally which is no worse than that of a local robust steady state. Since a robust algorithm is applying on the states of the real (with disturbances) subsystems, this bound can be interpreted as an average performance result for the real closed-loop system. To this end, we present our outcomes on local and global performance, illustrated by a numerical example.