837 resultados para Polymerization mechanism
Resumo:
Carruthers' "mindreading is prior" model postulates one unitary mindreading mechanism working identically for self and other. While we agree about shared mindreading mechanisms, there is also evidence from neuroimaging and mentalizing about dissimilar others that suggest factors that differentially affect self-versus-other mentalizing. Such dissociations suggest greater complexity than the mindreading is prior model allows.
Resumo:
Improving admittance of robotic joints is the key issue for making rehabilitation robots safe. This paper describes a design of Redundant Drive Joint (RD-Joint) which allows greater flexibility in the design of robotic mechanisms. The design strategy of the RD-Joint employs a systematic approach which consists of 1) adopting a redundant joint mechanism with internal kinematical redundancy to reduce effective joint inertia, and 2) adopting an adjustable admittance mechanism with a novel Cross link Reduction Mechanism and mechanical springs and dampers as a passive second actuator. First, the basic concepts used to construct the redundant drive joint mechanism are explained, in particular the method that allows a reduction in effective inertia at the output joint. The basic structure of the RD-Joint is introduced based on the idea of reduced inertia along with a method to include effective stiffness and damping. Then, the basic design of the adjustable admittance mechanism is described. Finally, a prototype of RD-joint is described and its expected characteristics are discussed.
Resumo:
A Neural Mass model is coupled with a novel method to generate realistic Phase reset ERPs. The power spectra of these synthetic ERPs are compared with the spectra of real ERPs and synthetic ERPs generated via the Additive model. Real ERP spectra show similarities with synthetic Phase reset ERPs and synthetic Additive ERPs.
Resumo:
This paper describes a proposed admittance enhanced redundant joint mechanism (AERJM) which allows greater flexibility in the design of robotic joints. First, the basic concept of a redundant joint mechanism that reduces joint inertia is explained. Second, the AERJM structure is discussed. AERJM consists of a redundancy introducing mechanism (RIM), the adjustable admittance mechanism (AAM) and an admittance enhancing actuator. The working principles of the AERJM concept are analysed. The design and a working prototype, consisting of a variable reduction mechanism, along with a spring and a damper with constant coefficients, are described.
Resumo:
Alterations to the genetic code – codon reassignments – have occurred many times in life’s history, despite the fact that genomes are coadapted to their genetic codes and therefore alterations are likely to be maladaptive. A potential mechanism for adaptive codon reassignment, which could trigger either a temporary period of codon ambiguity or a permanent genetic code change, is the reactivation of a pseudogene by a nonsense suppressor mutant transfer RNA. I examine the population genetics of each stage of this process and find that pseudogene rescue is plausible and also readily explains some features of extant variability in genetic codes.
Resumo:
This paper describes time-resolved x-ray diffraction data monitoring the transformation of one inverse bicontinuous cubic mesophase into another, in a hydrated lipid system. The first section of the paper describes a mechanism for the transformation that conserves the topology of the bilayer, based on the work of Charvolin and Sadoc, Fogden and Hyde, and Benedicto and O'Brien in this area. We show a pictorial representation of this mechanism, in terms of both the water channels and the lipid bilayer. The second section describes the experimental results obtained. The system under investigation was 2:1 lauric acid: dilauroylphosphatidylcholine at a hydration of 50% water by weight. A pressure-jump was used to induce a phase transition from the gyroid (Q(II)(G)) to the diamond (Q(II)(D)) bicontinuous cubic mesophase, which was monitored by time-resolved x-ray diffraction. The lattice parameter of both mesophases was found to decrease slightly throughout the transformation, but at the stage where the Q(II)(D) phase first appeared, the ratio of lattice parameters of the two phases was found to be approximately constant for all pressure-jump experiments. The value is consistent with a topology-preserving mechanism. However, the polydomain nature of our sample prevents us from confirming that the specific pathway is that described in the first section of the paper. Our data also reveal signals from two different intermediate structures, one of which we have identified as the inverse hexagonal (H-II) mesophase. We suggest that it plays a role in the transfer of water during the transformation. The rate of the phase transition was found to increase with both temperature and pressure-jump amplitude, and its time scale varied from the order of seconds to minutes, depending on the conditions employed.
Resumo:
Adult skeletal muscle possesses a resident stem cell population called satellite cells which are responsible for tissue repair following damage. Satellite cell migration is crucial in promoting rapid tissue regeneration but is a poorly understood process. Furthermore, the mechanisms facilitating satellite cell movement have yet to be elucidated. Here the process of satellite cell migration has been investigated revealing that they undergo two distinct phases of movement; firstly under the basal lamina and then rapidly increasing their velocity when on the myofibre surface. Most significantly we show that satellite cells move using a highly dynamic blebbing based mechanism and not via lamellopodia mediated propulsion. We show that nitric oxide and non-canonical Wnt signalling pathways are necessary for regulating the formation of blebs and the migration of satellite cells. In summary, we propose that the formation of blebs and their necessity for satellite cell migration has significant implications in the future development of therapeutic regimes aimed at promoting skeletal muscle regeneration.
Resumo:
Clusters of computers can be used together to provide a powerful computing resource. Large Monte Carlo simulations, such as those used to model particle growth, are computationally intensive and take considerable time to execute on conventional workstations. By spreading the work of the simulation across a cluster of computers, the elapsed execution time can be greatly reduced. Thus a user has apparently the performance of a supercomputer by using the spare cycles on other workstations.
Resumo:
Pluronic F127 diacrylate (F127DA) is a bifunctional acrylate and as such it should in principle produce macroscopically cross-linked materials; however, its photopolymerization in water does not lead to 3D-extended hydrogels. The main species present after photopolymerization appear to be cross-linked micelles, which indicates that the micellar morphology of F127DA has a template effect on the polymerization. The structural analogy causes the physical state of precursor and polymerized materials to be very similar for a wide range of concentrations (5–25% wt) and temperatures (10–37 °C). Also the long-range morphology of F127DA appears to have a template effect: samples photopolymerized in a micellar gel state and redispersed at high concentration (25% wt) show a long-range organization that depended on the concentration and therefore on the order of the precursor.
Resumo:
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.
Resumo:
Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10^10 kg/s from shallow-seated (4–6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).
Resumo:
A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.
Resumo:
This paper examines the ethics of the Clean Development Mechanism (CDM) in its architecture, processes and outcomes and its potential to allocate resources to the poor as ‘ethical development’. Two specific examples of CDM projects help us to explore some of the quandaries that seem to be quickly defining operating procedure for the CDM in its efforts to bring entitlementsto the poor. The paper concludes with reflections on the normative and social complications of the CDM and closes with three key areas of further investigation.