854 resultados para Polar Liquids
Resumo:
Experimental data are presented for liquid-liquid equilibria of mixtures of the room-temperature ionic liquid 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide ([C2MIM][NTf2]) with the three alcohols propan-1-ol, butan-1-ol, and pentan-1-ol and for the 1-butyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl) imide ([C4MIM][NTf2]) with cyclohexanol and 1,2-hexanediol in the temperature range of 275 K to 345 K at ambient pressure. The synthetic method has been used. Cloud points at a given composition were observed by varying the temperature and using light scattering to detect the phase splitting. In addition, the influence of small amounts of water on the demixing temperatures of binary mixtures of [C2MIM][NTf2] and propan-1-ol, butan-1-ol, and pentan-1-ol was investigated.
Resumo:
The Gutmann Acceptor Number (AN), which is a quantitative measure of Lewis acidity, has been estimated using the P-31 NMR chemical shift of a probe molecule, triethylphosphine oxide, for a range of chlorometallate(III) ionic liquids, based on Group 13 metals (aluminium(III), gallium(III) and indium(III)) and the 1-octyl-3-methylimidazolium cation, at different compositions. The results were interpreted in terms of extant speciation studies of chlorometallate(III) ionic liquids, and compared with a range of standard molecular solvents and acids. The value of these data were illustrated in terms of the selection of appropriate ionic liquids for specific applications.
Resumo:
A set of 1-alkyl-3-methylimidazolium alkanesulfonate ionic liquids, [C(n)mim][CkSO3], formed by the variation of the alkyl chain lengths both in the cation and the anion (n = 1-6, 8, or 10; k = 1-4, or 6), was synthesised, with sixteen of them being novel. The ionic liquids were characterised by H-1 and C-13 NMR spectroscopy, and mass spectrometry. Their viscosities and densities as a function of temperature, as well as melting points and decomposition temperatures, were determined. The molecular volumes, both experimental and calculated, were found to depend linearly on the sum (n + k).
Resumo:
The role of dispersion or van de Waals (VDW) interactions in imidazolium-based room-temperature ionic liquids is studied within the framework of density functional theory, using a recently developed non-empirical functional [M. Dion, H. Rydberg, E. Schroder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)], as efficiently implemented in the SIESTA code [G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009)]. We present results for the equilibrium structure and lattice parameters of several crystalline phases, finding a general improvement with respect to both the local density (LDA) and the generalized gradient approximations (GGA). Similar to other systems characterized by VDW bonding, such as rare gas and benzene dimers as well as solid argon, equilibrium distances and volumes are consistently overestimated by approximate to 7%, compared to -11% within LDA and 11% within GGA. The intramolecular geometries are retained, while the intermolecular distances and orientations are significantly improved relative to LDA and GGA. The quality is superior to that achieved with tailor-made empirical VDW corrections ad hoc [M. G. Del Popolo, C. Pinilla, and P. Ballone, J. Chem. Phys. 126, 144705 (2007)]. We also analyse the performance of an optimized version of this non-empirical functional, where the screening properties of the exchange have been tuned to reproduce high-level quantum chemical calculations [J. Klimes, D. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 074203 (2010)]. The results for solids are even better with volumes and geometries reproduced within 2% of experimental data. We provide some insight into the issue of polymorphism of [bmim][Cl] crystals, and we present results for the geometry and energetics of [bmim][Tf] and [mmim][Cl] neutral and charged clusters, which validate the use of empirical force fields. (C) 2011 American Institute of Physics. [doi:10.1063/1.3652897]
Resumo:
In this article, we describe general trends to be expected at short times when an excess electron is generated or injected in different room-temperature ionic liquids (RTILs). Perhaps surprisingly, the excess electron does not localize systematically on the positively charged cations. Rather, the excess charge localization pattern is determined by the cation and anion HOMO/LUMO gaps and, more importantly, by their relative LUMO alignments. As revealed by experiments, the short-time (ps/ns) transient UV spectrum of excess electrons in RTILs is often characterized by two bands, a broad band at low energies (above 1000 nm) and another weaker band at higher energies (around 400 nm). Our calculations show that the dry or presolvated electron spectrum (fs) also has two similar features. The broad band at low energies is due to transitions between electronic states with similar character on ions of the same class but in different locations of the liquid. The lower-intensity band at higher energies is due to transitions in which the electron is promoted to electronic states of different character, in some cases on counterions. Depending on the chemical nature of the RTIL, and especially on the anions, excess electrons can localize on cations or anions. Our findings hint at possible design strategies for controlling electron localization, where electron transfer or transport across species can be facilitated or blocked depending on the alignment of the electronic levels of the individual species.
Resumo:
A substantial acceleration of the Baylis-Hillman reaction between cyclohexenone and benzaldehyde has been observed when the reaction is conducted in water. Several different amine catalysts were tested, and as with reactions conducted in the absence of solvent, 3-hydroxyquinuclidine was found to be the optimum catalyst in terms of rate. The reaction has been extended to other aldehyde electrophiles including pivaldehyde. Attempts to extend this work to acrylates was only partially successful as rapid hydrolysis of methyl and ethyl acrylates occurred under the base-catalyzed and water-promoted conditions. However, tert-butyl acrylates were sufficiently stable to couple with relatively reactive electrophiles. Further studies on the use of polar solvents revealed that formamide also provided significant acceleration and the use of 5 equiv of formamide (optimum amount) gave faster rates than reactions conducted in water. Using formamide, further acceleration was achieved in the presence of Yb(OTf)(3) (5 mol %). The scope of the new conditions was tested with a range of Michael acceptors and benzaldehyde and with a range of electrophiles and ethyl acrylate. The origin of the rate acceleration is discussed.
Resumo:
Experiments have been carried out to investigate the polar distribution of atomic material ablated during the pulsed laser deposition of Cu in vacuum. Data were obtained as functions of focused laser spot size and power density. Thin films were deposited onto flat glass substrates and thickness profiles were transformed into polar atomic flux distributions of the form f(theta)=cos(n) theta. At constant focused laser power density on target, I=4.7+/-0.3X10(8) W/cm(2), polar distributions were found to broaden with a reduction in the focused laser spot size. The polar distribution exponent n varied from 15+/-2 to 7+/-1 for focused laser spot diameter variation from 2.5 to 1.4 mm, respectively, with the laser beam exhibiting a circular aspect on target. With the focused laser spot size held constant at phi=1.8 mm, polar distributions were observed to broaden with a reduction in the focused laser power density on target, with the associated polar distribution exponent n varying from 13+/-1.5 to 8+/-1 for focused laser power density variation from 8.3+/-0.3X10(8) to 2.2+/-0.1X10(8) W/cm(2) respectively. Data were compared with an analytical model available within the literature, which correctly predicts broadening of the polar distribution with a reduction in focused laser spot size and with a reduction in focused laser power density, although the experimentally observed magnitude was greater than that predicted in both cases. (C) 1996 American Institute of Physics.
Resumo:
The range of applications for plasmas in liquids, plasmas in contact with liquid surfaces and plasmas containing liquid drops is growing rapidly across a range of technologies. Here the focus is on plasmas where the electrodes are immersed in liquids and their applications in nanoscience. The physical phenomena in both high voltage (tens of kilovolts) and low voltage (a few hundred volts) plasmas in liquid are described together with a discussion of the plasma-induced chemistry. Studies show that in water the plasmas are formed in water vapour created by Joule heating as either channels in the liquid or as layers on the electrodes. The chemistry in these water vapour plasmas and at their interface with the liquid is discussed in the context of the highly reactive radicals produced, such as H and OH. The current use of a variety of plasmas-in-liquid systems in the area of nanoscience is discussed, with an emphasis on nanoparticle growth.
Resumo:
Experimental and finite element modelling methods are used to study the formation of vapour layers in electrical discharges through saline solutions. The experiments utilize shadowgraphic and photometric methods to observe the time dependence of thin vapour layers and plasma formation around electrodes driven by moderate voltage (<500 V) pulses, applied to an electrode immersed in a conducting saline solution. Finite element multiphysics software, coupling thermal and electrical effects, is employed to model the vapour layer formation. All relevant electrical and thermal properties of the saline are incorporated into the model, but hydrodynamic and surface tension effects are ignored. Experimental shadowgraph and modelling images are compared, as are current histories, and the agreement is very good. The comparison of experiment and modelling gives insight into both vapour layer production and subsequent plasma production. We show that, for example, superheating of the saline above its normal vaporization temperature may be playing a significant role in vapour formation. We also show that electric fields of approaching 10(7) V m(-1) can be achieved in the vapour layer.
Resumo:
We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [Cnmim] [NTf2] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory–Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C2mim] [NTf2]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C2mim][NTf2]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents.