975 resultados para Pleistocene fossil reefs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geophysical data are currently being interpreted as evidence for a late Pleistocene desiccation of Lake Victoria and its refilling 14 600 years ago. This implies that between 500 and 1000 endemic cichlid fish species must have evolved in 14 600 years, the fastest large-scale species radiation known. A recent review concludes that biological evidence clearly rejects the postulated Pleistocene desiccation of the lake: a 14 600 year history would imply exceptionally high speciation rates across a range of unrelated fish taxa. To test this suggestion, I calculated speciation rates for all 41 phylogenetic lineages of fish in the lake. Except for one cichlid lineage, accepting a 14 600 year history does not require any speciation rates that fall outside the range observed in fishes in other young lakes around the world. The exceptional taxon is a lineage of haplochromine cichlids that is also known for its rapid speciation elsewhere. Moreover, since it is unknown how many founding species it has, it is not certain that its speciation rates are really outside the range observed in fishes in other young lakes. Fish speciation rates are generally faster in younger than in older lakes, and those in Lake Victoria, by far the largest of the young lakes of the world, are no exception. From the speciation rates and from biogeographical observations that Lake Victoria endemics, which lack close relatives within the lake basin, have such relatives in adjacent drainage systems that may have had Holocene connections to Lake Victoria, I conclude that the composition of the fish assemblage does not provide biological evidence against Pleistocene desiccation. It supports a hypothesis of recent colonization from outside the lake basin rather than survival of a diverse assemblage within the basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiocarbon (14C) measurements of both organic carbon (OC) and elemental carbon (EC) allow a more detailed source apportionment, leading to a full and unambiguous distinction and quantification of the contributions from non-fossil and fossil sources. A thermal-optical method with a commercial OC/EC analyzer to isolate water-insoluble OC (WIOC) and EC for their subsequent 14C measurement was applied for the first time to filtered precipitation samples collected at a costal site in Portugal and at a continental site in Switzerland. Our results show that WIOC in precipitation is dominated by non-fossil sources such as biogenic and biomass-burning emissions regardless of rain origins and seasons, whereas EC sources are shared by fossil-fuel combustion and biomass burning. In addition, monthly variation of WIOC in Switzerland was characterized by higher abundance in warm than in cold seasons, highlighting the importance of biogenic emissions to particulate carbon in rainwater. Samples with high particulate carbon concentrations in Portugal were found to be associated with increased biogenic input. Despite the importance of non-fossil sources, fossil emissions account for approximately 20% of particulate carbon in wet deposition for our study, which is in line with fossil contribution in bulk rainwater dissolved organic carbon as well as aerosol WIOC and EC estimated by the 14C approach from other studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim Our aim was to discriminate different species of Pinus via pollen analysis in order to assess the responses of particular pine species to orbital and millennial-scale climate changes, particularly during the last glacial period. Location Modern pollen grains were collected from current pine populations along transects from the Pyrenees to southern Iberia and the Balearic Islands. Fossil pine pollen was recovered from the south-western Iberian margin core MD95-2042. Methods We measured a set of morphological traits of modern pollen from the Iberian pine species Pinus nigra, P. sylvestris, P. halepensis, P. pinea and P. pinaster and of fossil pine pollen from selected samples of the last glacial period and the early to mid-Holocene. Classification and regression tree (CART) analysis was used to establish a model from the modern dataset that discriminates pollen from the different pine species and allows identification of fossil pine pollen at the species level. Results The CART model was effective in separating pollen of P. nigra and P. sylvestris from that of the Mediterranean pine group (P. halepensis, P. pinea and P. pinaster). The pollen of Pinus nigra diverged from that of P. sylvestris by having a more flattened corpus. Predictions using this model suggested that fossil pine pollen is mainly from P. nigra in all the samples analysed. Pinus sylvestris was more abundant in samples from Greenland stadials than Heinrich stadials, whereas Mediterranean pines increased in samples from Greenland interstadials and during the early to mid-Holocene. Main conclusions Morphological parameters can be successfully used to increase the taxonomic resolution of fossil pine pollen at the species level for the highland pines (P. nigra and P. sylvestris) and at the group of species level for the Mediterranean pines. Our study indicates that P. nigra was the dominant component of the last glacial south-western/central Iberian pinewoods, although the species composition of these woodlands varied in response to abrupt climate changes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear- and unimodal-based inference models for mean summer temperatures (partial least squares, weighted averaging, and weighted averaging partial least squares models) were applied to a high-resolution pollen and cladoceran stratigraphy from Gerzensee, Switzerland. The time-window of investigation included the Allerød, the Younger Dryas, and the Preboreal. Characteristic major and minor oscillations in the oxygen-isotope stratigraphy, such as the Gerzensee oscillation, the onset and end of the Younger Dryas stadial, and the Preboreal oscillation, were identified by isotope analysis of bulk-sediment carbonates of the same core and were used as independent indicators for hemispheric or global scale climatic change. In general, the pollen-inferred mean summer temperature reconstruction using all three inference models follows the oxygen-isotope curve more closely than the cladoceran curve. The cladoceran-inferred reconstruction suggests generally warmer summers than the pollen-based reconstructions, which may be an effect of terrestrial vegetation not being in equilibrium with climate due to migrational lags during the Late Glacial and early Holocene. Allerød summer temperatures range between 11 and 12°C based on pollen, whereas the cladoceran-inferred temperatures lie between 11 and 13°C. Pollen and cladocera-inferred reconstructions both suggest a drop to 9–10°C at the beginning of the Younger Dryas. Although the Allerød–Younger Dryas transition lasted 150–160 years in the oxygen-isotope stratigraphy, the pollen-inferred cooling took 180–190 years and the cladoceran-inferred cooling lasted 250–260 years. The pollen-inferred summer temperature rise to 11.5–12°C at the transition from the Younger Dryas to the Preboreal preceded the oxygen-isotope signal by several decades, whereas the cladoceran-inferred warming lagged. Major discrepancies between the pollen- and cladoceran-inference models are observed for the Preboreal, where the cladoceran-inference model suggests mean summer temperatures of up to 14–15°C. Both pollen- and cladoceran-inferred reconstructions suggest a cooling that may be related to the Gerzensee oscillation, but there is no evidence for a cooling synchronous with the Preboreal oscillation as recorded in the oxygen-isotope record. For the Gerzensee oscillation the inferred cooling was ca. 1 and 0.5°C based on pollen and cladocera, respectively, which lies well within the inherent prediction errors of the inference models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial–interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5, and the Holocene. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within Lake Ohrid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of Soppensee (Central Switzerland, 596 m a.s.l.) has been reconstructed using algal remains such as diatoms, chlorophytes and fossil pigments, as well as the pollen and spores of macrophytes. Sediment accumulation in Soppensee began at the end of the last glacial period, approximately 15,000 yrs ago. During the Oldest Dryas biozone (> 12,700 radiocarbon yrs B.P.) the lake had low primary productivity. After reforestation with birch and later pine, around 12,700 B.P., phases of summer anoxia occurred in the lake. These anoxic conditions were most probably caused by additional carbon input from the catchment, as well as longer phases of stratification due to reduced wind exposure caused by the sheltering effect of increased tree cover. From the Younger Dryas biozone (10,800 to 10,000 radiocarbon yrs B.P.) onwards, Soppensee became meromictic for several millennia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diatom analyses with an annual resolution were carried out on varves of the hypertrophic Baldeggersee (Central Swiss Plateau) for the timespan ad 1885 to 1993. They reveal seven major changes in the dominant planktonic diatoms. As a result of progressive nutrient enrichment, Baldeggersee changed in the 1910s from a Cyclotella to a Tabellaria fenestrata dominated assemblage, and eventually in the 1950s to a Stephanodiscus parvus dominated diatom assemblage. The timing and direction of diatom-assemblage changes in the varved sediment compare well with sedimentological and limnological observations. Partitioning of the variance in the diatom data revealed that TP is a stronger explanatory variable than temperature for these changes. A diatom-inferred total phosphorus (TP) reconstruction indicates three major steps in eutrophication, occurring at 1909, the mid-1950s and the mid-1970s. Comparison with TP measurements in the water column demonstrates that the diatom-TP inference model used is able to hindcast past TP concentrations reliably. The major steps in eutrophication led to decreases in diatom diversity and also resulted in a progressive increase of calcite grain-size. The lake restoration programme established since 1982 shows no direct impact on the composition of the diatom assemblages. However, the decrease in phosphorus loads since the mid-1970s is reflected in the diatom assemblages and in decreasing diatom-inferred TP concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seven sites were drilled during Ocean Drilling Program Leg 177 in the Atlantic sector of the Southern Ocean (SO) on a transect over the Antarctic Circumpolar Current from the Subantarctic to the Antarctic Zone. At four sites sediments were recovered with a Pliocene/Pleistocene sediment package of up to 580 m allowing the refinement of previous diatom zonation concepts. Samples were analyzed on stratigraphic distribution and abundance of diatom species. A refined diatom biozonation tied to the geomagnetic polarity record is proposed. For the middle and late Pleistocene two zonations applicable to the northern and southern area of the SO were constructed, considering different latitudinal distributions of biostratigraphic diatom marker species. The southern zonation for the Pleistocene relies on the occurrence of species of the genus Rouxia, R. leventerae and R. constricta n. sp. as well as on a revised last occurrence datum (LOD) of Actinocyclus ingens (0.38 Ma, late marine isotope stage (MIS) 11). The use of these new stratigraphic marker species refines the temporal resolution for biostratigraphic age assignment to up to 0.1 Myr. In particular the LOD of R. leventerae as an indicator for the MIS 6/5 boundary (Termination II) will improve future dating of carbonate-free Antarctic sediments. These new data were obtained from sediments of Sites 1093 and 1094 (Antarctic Zone). The northern zonation for the middle and late Pleistocene time interval is based on the Pleistocene abundance pattern of Hemidiscus karstenii which was already proposed by previous investigations (e.g. Gersonde and Barcena, 1998). One new species (R. constricta) and two new combinations (Fragilariopsis clementia, Fragilariopsis reinholdii) are proposed in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present uranium-thoriumchronology for a 102 mcore through a Pleistocene reef at Tahiti (French Polynesia) sampled during IODP Expedition 310 "Tahiti Sea Level". We employ total and partial dissolution procedures on the older coral samples to investigate the diagenetic overprint of the uranium-thoriumsystem. Although alteration of the U-Th system cannot be robustly corrected, diagenetic trends in the U-Th data, combined with sea level and subsidence constraints for the growth of the corals enables the age of critical samples to be constrained to marine isotope stage 9. We use the ages of the corals, together with d18O based sea-level histories, to provide maximum constraints on possible paleo water-depths. These depth constraints are then compared to independent depth estimates based on algal and foraminiferal assemblages, microbioerosion patterns, and sedimentary facies, confirming the accuracy of these paleo water-depth estimates. We also use the fact that corals could not have grown above sea level to place amaximumconstraint on the subsidence rate of Tahiti to be 0.39 m ka**-1,with the most likely rate being close to the existing minimum estimate of 0.25m ka**-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an attempt to document the palaeoecological affinities of individual extant and extinct dinoflagellate cysts, Late Pliocene and Early Pleistocene dinoflagellate cyst assemblages have been compared with geochemical data from the same samples. Mg/Ca ratios of Globigerina bulloides were measured to estimate the spring-summer sea-surface temperatures from four North Atlantic IODP/DSDP sites. Currently, our Pliocene-Pleistocene database contains 204 dinoflagellate cyst samples calibrated to geochemical data. This palaeo-database is compared with modern North Atlantic and global datasets. The focus lies in the quantitative relationship between Mg/Ca-based (i.e. spring-summer) sea-surface temperature (SSTMg/Ca) and dinoflagellate cyst distributions. In general, extant species are shown to have comparable spring-summer SST ranges in the past and today, demonstrating that our new approach is valid for inferring spring-summer SST ranges for extinct species. For example, Habibacysta tectata represents SSTMg/Ca values between 10° and 15°C when it exceeds 30% of the assemblage, and Invertocysta lacrymosa exceeds 15% when SSTMg/Ca values are between 18.6° and 23.5°C. However, comparing Pliocene and Pleistocene SSTMg/Ca values with present day summer values for the extant Impagidinium pallidum suggests a greater tolerance of higher temperatures in the past. This species occupies more than 5% of the assemblage at SSTMg/Ca values of 11.6-17.9°C in the Pliocene and Pleistocene, whereas present day summer SSTs are around -1.7 to 6.9°C. This observation questions the value of Impagidinium pallidum as reliable indicator of cold waters in older deposits, and may explain its bipolar distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acritarchs have received limited attention in palynological studies of the Cenozoic, although they have much potential both for refining Neogene and Quaternary stratigraphy, especially in mid- and high northern latitudes, and developing palaeoceanographical reconstructions. Here we formally describe and document the stratigraphical and palaeotemperature ranges (from foraminiferal Mg/Ca) of four new acritarch species: Cymatiosphaera? aegirii sp. nov., Cymatiosphaera? fensomei sp. nov., Cymatiosphaera? icenorum sp. nov. and Lavradosphaera canalis sp. nov. In reviewing the stratigraphical distributions of all species of the genus Lavradosphaera De Schepper & Head, 2008, we demonstrate their correlation potential between the North Atlantic and Bering Sea in the Pliocene. Additionally, Lavradosphaera lucifer De Schepper & Head, 2008 and Lavradosphaera canalis sp. nov., while not themselves overlapping stratigraphically, have morphological intermediates that do partially overlap and may represent an evolutionary trend consequent upon climate cooling in the Late Pliocene. Finally, we show that the highest abundances of the acritarchs presented here were living in the eastern North Atlantic, in surface-water temperatures not very different from today.