888 resultados para Plasma surface modification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the application of surface-enhanced resonance Raman spectroscopy (SERRS) for the structural study of alizarin red S (ARS) and the nature of its interaction with silver nanoparticles. SERRS data for ARS over nanostructured silver electrodes suggest a surface-induced reaction of the adsorbed dye and the formation of an ion stabilized by the dye and alkali ions adsorbed at the metal surface. We found that precoating the SERS active substrate with 1-propanethiol inhibits the surface-induced modification of ARS. In addition to preventing structural modifications of ARS, the coating also concentrates the hydrophobic dye close enough to the SERS active interface enabling the observation of excellent Raman spectra of ARS in aqueous environment at ppm levels. The influence of resonance Raman effect and of the pH on the SERS spectra of ARS was also investigated. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-density polyethylene was filled with cellulose fibres from sugar cane bagasse obtained from organosolv/supercritical carbon dioxide pulping process. The fibres were also used after chemical modification with octadecanoyl and dodecanoyl chloride acids. The morphology, thermal properties, mechanical properties in both the linear and nonlinear range, and the water absorption behaviour of ensuing composites were tested. The evidence of occurrence of the chemical modification was checked by X-ray photoelectron spectrometry. The degree of polymerisation of the fibres and their intrinsic properties (zero tensile strength) were determined. It clearly appeared that the surface chemical modification of cellulose fibres resulted in improved interfacial adhesion with the matrix and higher dispersion level. However, composites did not show improved mechanical performances when compared to unmodified fibres. This surprising result was ascribed to the strong lowering of the degree of polymerisation of cellulose fibres (as confirmed by the drastic decrease of their zero tensile strength) after chemical treatment despite the mild conditions used. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

If a plastic material is used as a print bearer there are a need of a special surface treatment to get agod and durable printing. The most used surface treatment technique for the moment is coronatreatment. This kind of treatment has unfortunately showed not to be so durable in the long term.Plasma treatment which in this case uses different kind of gases in the treatment of polypropyleneis shown as a more effective treatment in this project. When the plasma treated surface has beenprinted is the good quality last much longer and the adhesion between the ink and the surface isremained. To test this adhesion is for the moment a standard used (ASTM D3359). This standardhas appeared unstable and dependent at many different factors, which gives a big variation in thetest results. Because of this has new test methods been carried out to give a more even and morereliable result in the test of the adhesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SILVA, J. S. P. Estudo das características físico-químicas e biológicas pela adesão de osteoblastos em superfícies de titânio modificadas pela nitretação em plasma. 2008. 119 f. Tese (Doutorado) - Faculdade de Medicina, Universidade de São Paulo. São Paulo, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, AISI 1010 steel samples were plasma nitrided into 20% N 2 100 Pa and 400 Pa for N 2 and H 2 , respectively), temperatures of 500 and 580 °C, during 2 h. Three different procedures for cooling were accomplished after nitriding. In the first procedure the cooling occurred naturally, that is, the sample was kept on substrate holder. In the second one the sample was pulled off and cooling in a cold surface. Finally, in the third cooling process the sample was pulled off the substrate holder down into special reservoir filled with oil held at ambient temperature. The properties of the AISI 1010 steel samples were characterized by optical and electron microscopy, X-ray diffraction, Mössbauer spectroscopy and microhardness tests. Thermal gradient inside the sample kept on substrate holder during cooling process was measured by three inserted thermocouples at different depths. When samples were cooled rapidly the transformation of ϵ-Fe 2 − 3 N to γ′-Fe 4 N was inhibited. Such effect is indicated by the high concentration of ϵ-Fe compound zone. To get solid state solution of nitrogen in the diffusion zone, instead of precipitates of nitride phases, the cooling rate should be higher than a critical value of about 0.95 °C/s. When this value is reached at any depth of the diffusion zone, two distinct diffusion zones will appear. Temperature gradients were measured inside the samples as a consequence of the plasma treatment. It's suggested the need for standardization of the term “treatment temperature” for plasma treatment because different nitrided layer properties could be reported for the same “treatment temperature”.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research there was an evaluation of the best conditions of nitriding in plasma within a cathodic cage at an atmosphere of 80% N2-20%H2 in samples of tool manganese steel AISI D6, cold working, treated thermally in the following conditions: tension relief, treated thermally to temperature of maximum heat, temperate heat and temperate and temperate heat. A pressure of 2.5mbar and temperatures of 400 and 300ºC com treatment time of two and three hours were used to evaluate its performance as cutting tool (punch) of bicycle backs. Hardness, micro-structural aspects (layer thickness, interface, grain size etc), and crystal phases on the surface were appraised. When treated to tension relief, thermally treated to maximum heat temperature, temperature and temperate heat, the samples presented hardness levels of 243HV, 231HV, 832HV, and 653HV, respectively. The best nitrification conditions were: four hours and 300ºC for heat samples. A superficial hardness of 1000HV and a 108µm thickness for the nitrided layer were found in these samples

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the research, steel samples tool AISI D2, treated thermally, in the conditions: relief of tension, when maximum, seasoned and seasoned was treated thermally in the temperature of revenimento and revenida had been nitrited in plasma with cathodic cage, in atmosphere of 80%N2:20%H2. One used pressure of 2,5 mbar, 400 and 480°C temperatures with treatment time of 3 and 4 hours, with the objective to evaluate its performance in pipes cut tool. It was compared that the performance of the same steel when only thermally treated, both with tension relief. It was evaluated its hardness. Microstructural aspects (the layer thickness, interface, graisn size, etc) and crystalline phases on the surface. Besides, it was verified accomplishment possibility of nitriding simultaneous to annealing treatment. The tempering samples had presented hardness levels of 600 HV, while in nitrited samples these values had been 1100 HV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discs were grade II cp Ti oxynitride by plasma of Ar - N2 - O2 using different proportions of individual gases. These ratios were established from analysis of optical emission spectroscopy (OES) of plasma species. The proportions that resulted in species whose spectra showed an abrupt change of light intensity were chosen for this study. Nanohardness tests revealed that there was a correlation between the intensity of N2 + species with the hardness, because the treatments where they had a higher intensity, obtained a higher value nanohardness, although the crystalline phases have remained unchanged. With respect to topography, it was observed that in general, the surface roughness is related to the intensities of plasma species, because they may have different values depending on the behavior of the species. Images obtained by optical microscopy revealed a surface with grains of different colors to optical reflectance showed a peak of reflection in the red area. Measures the contact angle and surface tension showed hydrophilic properties and hydrophilic with little variation of polar and dispersive components of surface tension

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pulsed plasma nitriding is a solution currently used in the metallurgical industry to resolve problems earlier in the processing of parts by using plasma DC voltage. These problems consisted mainly of edge effect and opening arches caused due to non-uniformity of electric fields on uneven surfaces. By varying the pulse width can reduce these effects. However, variations in pulse width can drastically affect the population of the plasma species and hence the final microstructure of the nitrided layer. In literature, little is known about the effect of process parameters on the properties of the plasma species and, consequently, the surface properties. We have developed a system of nitriding with pulsed source with fixed period of 800  pulse width is variable. Examined the variation of these parameters on the properties of nitrided surface when keeping constant temperature, gas composition, flow, pressure and power. It was found that the values of width and pulse repetition time of considerable influence in the intensities of the species present in plasma. Moreover, we observed the existence of the edge effect for some values of pulse widths, as well as changes in surface roughness and hardness

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical-chemical properties of Ti are sensible to the presence of interstitial elements. In the case of thermochemical treatments plasma assisted, the influence of different active species is not still understood. In order to contribute for such knowledge, this work purposes a study of the role played by the active species atmosphere into the Ar N2 CH4 carbonitriding plasma. It was carried out a plasma diagnostic by OES (Optical Emission Spectroscopy) in the z Ar y N2 x CH4 plasma mixture, in which z, y and x indexes represent gas flow variable from 0 to 4 sccm (cm3/min). The diagnostic presents abrupt variations of emission intensities associated to the species in determined conditions. Therefore, they were selected in order to carry out the chemical treatment and then to investigate their influences. Commercial pure Ti disks were submitted to plasma carbonitriding process using pre-established conditions from the OES measurements while some parameters such as pressure and temperature were maintained constant. The concentration profiles of interstitial elements (C and N atoms) were determined by Resonant Nuclear Reaction Analysis (NRA) resulting in a depth profile plots. The reactions used were 15N(ρ,αγ)12C and 12C(α,α)12C. GIXRD (Grazing Incidence X-Ray Diffraction) analysis was used in order to identify the presence of phases on the surface. Micro-Raman spectroscopy was used in order to qualitatively study the carbon into the TiCxN1 structure. It has been verified which the density species effectively influences more the diffusion of particles into the Ti lattice and characteristics of the layer formed than the gas concentration. High intensity of N2 + (391,4 nm) and CH (387,1 nm) species promotes more diffusion of C and N. It was observed that Hα (656,3 nm) species acts like a catalyzer allowing a deeper diffusion of nitrogen and carbon into the titanium lattice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interstitial compounds of titanium have been mainly studied due to the large range of properties acquired when C, N, O and H atoms are added. In this work, surfaces of TiCxNy were produced by thermochemical treatments assisted by plasma with different proportions of Ar + N2 + CH4 gas mixture. The Ar gas flow was fixed in 4 sccm, varying only N2 and CH4 gas flows. During the thermochemical treatment, the plasma was monitored by Optical Emission Spectroscopy (OES) for the investigation of the influence of active species. After treatments, C and N concentration profile, crystalline and amorphous phases were analyzed by Nuclear Reaction (NRA). Besides tribomechanical properties of the Ti surface were studied through the nanohardness measurements and friction coefficient determination. The worn areas were evaluated by profilometry and Scanning Electronic Microscope (SEM) in order to verify the wear mechanism present in each material. It has been seen which the properties like nanohardness and friction coefficient have strong relation with luminous intensity of species of the plasma, suggesting a using of this characteristic as a parameter of process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan is being studied for use as dressing due their biological properties. Aiming to expand the use in biomedical applications, chitosan membranes were modified by plasma using the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen (H2). The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy and water absorption test. Biological Tests were also performed, such as: test sterilization and proliferation of fibroblasts (3T3 line). Through SEM we observed morphological changes occurring during the plasma treatment, the formation of micro and nano-sized valleys. MFA was used to analyze different roughness parameters (Ra, Rp, Rz) and surface topography. It was found that the treated samples had an increase in surface roughness and sharp peaks. Methane plasma treatment decreased the hydrophilicity of the membranes and also the rate of water absorption, while the other treatments turned the membranes hydrophilic. The sterilization was effective in all treatment times with the following gases: Ar, N2 and H2. With respect to proliferation, all treatments showed an improvement in cell proliferation increased in a range 150% to 250% compared to untreated membrane. The highlights were the treatments with Ar 60 min, O2 60 min, CH4 15 min. Observing the results of the analyzes performed in this study, it appears that there is no single parameter that influences cell proliferation, but rather a set of ideal conditions that favor cell proliferation