962 resultados para Plant water relationships


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Globally, plant-pollinator communities are subject to a diverse array of perturbations and in many temperate and semi-arid systems fire is a dominant structuring force. We present a novel and highly integrated approach, which quantifies, in parallel, the response to fire of pollinator communities, floral communities and floral reward structure. Mt Carmel, Israel is a recognised bee-flower biodiversity hotspot, and using a chronosequence of habitats with differing post-fire ages, we follow the changes in plant-pollinator community organisation from immediately following a burn until full regeneration of vegetation. Initially, fire has a catastrophic effect on these communities, however, recovery is rapid with a peak in diversity of both flowers and bees in the first 2 years post-fire, followed by a steady decline over the next 50 years. The regeneration of floral communities is closely matched by that of their principal pollinators. At the community level we quantify, per unit area of habitat, key parameters of nectar and pollen forage known to be of importance in structuring pollinator communities. Nectar Volume, nectar water content, nectar concentration and the diversity of nectar foraging niches are all greatest immediately following fire with a steady decrease as regeneration proceeds. Temporal changes in energy availability for nectar, pollen, total energy (nectar + pollen) and relative importance of pollen to nectar energy show a similar general decline with site age, however, the pattern is less clear owing to the highly patchy distribution of floral resources. Changes in floral reward structure reflect the general shift from annuals (generally low-reward open access flowers) to perennials (mostly high-reward and restricted access flowers) as post-fire regeneration ensues. The impact of fire on floral communities and their associated rewards have clear implications for pollinator community structure and we discuss this and the role of other disturbance factors on these systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aims of this study were to explore the environmental factors that determine the distribution of plant communities in temporary rock pools and provide a quantitative analysis of vegetation-environment relationships for five study sites on the island of Gavdos, southwest of Crete, Greece. Data from 99 rock pools were collected and analysed using Two-Way Indicator Species Analysis (TWINSPAN), Detrended Correspondence Analysis (DCA) and Canonical Correspondence Analysis (CCA) to identify the principal communities and environmental gradients that are linked to community distribution. A total of 46 species belonging to 21 families were recorded within the study area. The dominant families were Labiatae, Gramineae and Compositae while therophytes and chamaephytes were the most frequent life forms. The samples were classified into six community types using TWINSPAN, which were also corroborated by CCA analysis. The principal gradients for vegetation distribution, identified by CCA, were associated with water storage and water retention ability, as expressed by pool perimeter and water depth. Generalised Additive Models (GAMs) were employed to identify responses of four dominant rock pool species to water depth. The resulting species response curves showed niche differentiation in the cases of Callitriche pulchra and Tillaea vaillantii and revealed competition between Zannichellia pedunculata and Chara vulgaris. The use of classification in combination with ordination techniques resulted in a good discrimination between plant communities. Generalised Additive Models are a powerful tool in investigating species response curves to environmental gradients. The methodology adopted can be employed for improving baseline information on plant community ecology and distribution in Mediterranean ephemeral pools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objective of this research was to determine how the presence of more than one plant and more than one species in a container influence plant quality, particularly when the volume of water given to the container is reduced. Petunia xhybrida 'Hurrah White' and Impatiens 'Cajun Violet' were chosen as typical bedding plant species. Plants were grown in 2 1 containers either under "100% ETp" (i.e., replacing all the water lost by evapotranspiration in the previous 24 h) or under a moisture-restrictive regime of "25% ETp," in which plants received 25% of the "100% ETp" value. An ancillary experiment investigated whether low watering resulted in floral buds being aborted. Results demonstrated that watering requirements of Petunia under "100% ETp" (i.e., replacing all the water lost by evapotranspiration in the previous 24 h) were on average 30% greater than those of Impatiens. However, when two Petunia plants were growing in the same container, the volume of water required to maintain soil moisture content at container capacity was on average only 10% greater than for a single plant. Under a "25% ETp" regime in which plants received 25% of the "100% ETp" value, flower number, plant height, and flower size were reduced by 50%,33%, and 13%,respectively,in Petunia compared with "100% ETp." For example, flower numbers decreased from an average of 71 to 33 flowers per plant in "100% ETp" and "25% ETp," respectively. Petunia plants in the "25% ETp" regime, however, were more efficient at producing both biomass and flowers in relation to the volume of water applied. Petunia plants that experienced both competition from other plants in the container and lower irrigation rates had enhanced efficiency of flower production (i.e., more flowers per unit biomass). For Impatiens, however, the growing of single plants at "25% ETp" was plausible, but the addition of a Petunia plant at "25% ETp" was detrimental to plant quality (Impatiens flower numbers reduced by 75%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Encapsulated cocoa (Theobroma cacao L.) somatic embryos subjected to 0.08-1.25 M sucrose treatments were analyzed for embryo soluble sugar content, non-freezable water content, moisture level after desiccation and viability after desiccation and freezing. Results indicated that the higher the sucrose concentration in the treatment medium, the greater was the extent of sucrose accumulation in the embryos. Sucrose treatment greatly assisted embryo post-desiccation recovery since only 40% of the control embryos survived desiccation, whereas a survival rate of 60-95% was recorded for embryos exposed to 0.5-1.25 M sucrose. The non-freezable water content of the embryos was estimated at between 0.26 and 0.61 g H2O g(-1)dw depending on the sucrose treatment, and no obvious relationship could be found between the endogenous sucrose level and the amount of non-freezable water in the embryos. Cocoa somatic embryos could withstand the loss of a fraction of their non-freezable water without losing viability following desiccation. Nevertheless, the complete removal of potentially freezable water was not sufficient for most embryos to survive freezing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flowering is generally considered to be advanced by water deficits in many woody perennial species. A long-standing paradigm being that as a plant senses severe environmental conditions resources are diverted away from vegetative growth and towards reproduction before death. It is demonstrated that in Rhododendron flowering is promoted under water deficit treatments. However, the promotion of flowering is not achieved via all increase in floral initiation, but through separate developmental responses. If regulated deficit irrigation (RDI) is imposed prior to the time of initiation, fewer vegetative nodes are formed before the apical meristems switch to floral initiation, and chronologically, floral initiation occurs earlier. Both RDI and partial rootzone drying (PRD) treatments stimulate the development of more flowers Oil each inflorescence if the treatments are continued after the plant has undergone floral initiation. However, floral initiation is inhibited by soil water deficits. If the soil water deficit continues beyond the stages of floral development then anthesis call occur prematurely oil the fully formed floral buds without a need for a winter chilling treatment. It is hypothesised that inhibition of floral initiation in plants experiencing severe soil water deficits results from the inhibitory action Of ABA transportation to the apical meristem from stressed roots. It is demonstrated that ABA applications to well-watered Rhododendron inhibit floral initiation. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulated irrigation has the potential to improve crop quality in woody ornamentals by reducing excessive vigour and promoting a more compact habit. This research aimed to compare the effectiveness and the mode of action of two techniques, regulated deficit irrigation (RDI) and partial root drying (PRD), when applied to container-grown ornamentals through drip irrigation. Results showed that RDI and PRD reduced growth in Cotinus coggygria 'Royal Purple', but in Forsythia x intermedia 'Lynwood', significant reductions were recorded only with RDI. Physiological measurements in Forsythia indicated that reductions in stomatal conductance (g(s)) occurred in both treatments, but those in the RDI tended to be more persistent. Reduced g(s) in PRD was consistent with the concept that chemical signals from the root can regulate stomatal aperture alone; however, the data also suggested that optimising the growth reduction required a moderate degree of shoot water deficit (i.e. a hydraulic signal to be imposed). As RDI was associated with tissue water deficit, it was used in a second experiment to determine the potential of this technique to precondition container-grown plants against subsequent drought stress (e.g. during retail stages or after planting out). Speed of acclimation would be important in a commercial context, and the results demonstrated that both slow and rapid imposition of RDI enabled Forsythia plants to acclimate against later drought events. This article discusses the potential to both improve ornamental plant quality and enhance tolerance to subsequent adverse conditions through controlled, regulated irrigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Almost all stages of a plant pathogen life cycle are potentially density dependent. At small scales and short time spans appropriate to a single-pathogen individual, density dependence can be extremely strong, mediated both by simple resource use, changes in the host due to defence reactions and signals between fungal individuals. In most cases, the consequences are a rise in reproductive rate as the pathogen becomes rarer, and consequently stabilisation of the population dynamics; however, at very low density reproduction may become inefficient, either because it is co-operative or because heterothallic fungi do not form sexual spores. The consequence will be historically determined distributions. On a medium scale, appropriate for example to several generations of a host plant, the factors already mentioned remain important but specialist natural enemies may also start to affect the dynamics detectably. This could in theory lead to complex (e.g. chaotic) dynamics, but in practice heterogeneity of habitat and host is likely to smooth the extreme relationships and make for more stable, though still very variable, dynamics. On longer temporal and longer spatial scales evolutionary responses by both host and pathogen are likely to become important, producing patterns which ultimately depend on the strength of interactions at smaller scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to determine whether shoot growth could be regulated and plant quality improved through two controlled irrigation techniques: Regulated Deficit Irrigation (RDI) or Partial Root Drying (PRD). An additional benefit of such techniques is that they would also improve the efficiency of irrigation application and reduce the volume of water used on commercial nurseries. Results from two ornamental woody plant species (Cotinus and Forsythia) demonstrated that plant quality could be significantly improved when RDI was applied at ≤ 60% of potential evapo-transpiration (ETp). Stomatal closure and reduced leaf and internode growth rates were associated with both the RDI and PRD techniques, but reduced leaf water potential was only recorded in the RDI system. Changes in xylem sap pH and ABA concentrations were correlated with changes in shoot physiology, and thought to be generated by those roots exposed to drying soil. By adopting such controlled irrigation systems on commercial holdings it is estimated that water consumption could be reduced by 50 to 90%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the oil-absorption process in deep-fat fried potato cylinders (frying temperatures of 155degreesC, 170degreesC, and 185degreesC) allowed to distinguish 3 oil fractions: structural oil (absorbed during frying), penetrated surface oil (suctioned during cooling), and surface oil. Results showed that a small amount of oil penetrates during frying because most of the oil was picked up at the end of the process, suggesting that oil uptake and water removal are not synchronous phenomena. After cooling, oil was located either on the surface of the chip or suctioned into the porous crust microstructure, with an inverse relationship between them for increasing frying times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production and release of dissolved organic carbon (DOC) from peat soils is thought to be sensitive to changes in climate, specifically changes in temperature and rainfall. However, little is known about the actual rates of net DOC production in response to temperature and water table draw-down, particularly in comparison to carbon dioxide (CO2) fluxes. To explore these relationships, we carried out a laboratory experiment on intact peat soil cores under controlled temperature and water table conditions to determine the impact and interaction of each of these climatic factors on net DOC production. We found a significant interaction (P < 0.001) between temperature, water table draw-down and net DOC production across the whole soil core (0 to −55 cm depth). This corresponded to an increase in the Q10 (i.e. rise in the rate of net DOC production over a 10 °C range) from 1.84 under high water tables and anaerobic conditions to 3.53 under water table draw-down and aerobic conditions between −10 and − 40 cm depth. However, increases in net DOC production were only seen after water tables recovered to the surface as secondary changes in soil water chemistry driven by sulphur redox reactions decreased DOC solubility, and therefore DOC concentrations, during periods of water table draw-down. Furthermore, net microbial consumption of DOC was also apparent at − 1 cm depth and was an additional cause of declining DOC concentrations during dry periods. Therefore, although increased temperature and decreased rainfall could have a significant effect on net DOC release from peatlands, these climatic effects could be masked by other factors controlling the biological consumption of DOC in addition to soil water chemistry and DOC solubility. These findings highlight both the sensitivity of DOC release from ombrotrophic peat to episodic changes in water table draw-down, and the need to disentangle complex and interacting controls on DOC dynamics to fully understand the impact of environmental change on this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of eutrophication in river systems is poorly understood given the complex relationship between fixed plants, algae, hydrodynamics, water chemistry and solar radiation. However there is a pressing need to understand the relationship between the ecological status of rivers and the controlling environmental factors to help the reasoned implementation of the Water Framework Directive and Catchment Sensitive Farming in the UK. This research aims to create a dynamic, process-based, mathematical in-stream model to simulate the growth and competition of different vegetation types (macrophytes, phytoplankton and benthic algae) in rivers. The model, applied to the River Frome (Dorset, UK), captured well the seasonality of simulated vegetation types (suspended algae, macrophytes, epiphytes, sediment biofilm). Macrophyte results showed that local knowledge is important for explaining unusual changes in biomass. Fixed algae simulations indicated the need for the more detailed representation of various herbivorous grazer groups, however this would increase the model complexity, the number of model parameters and the required observation data to better define the model. The model results also highlighted that simulating only phytoplankton is insufficient in river systems, because the majority of the suspended algae have benthic origin in short retention time rivers. Therefore, there is a need for modelling tools that link the benthic and free-floating habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An increasing importance is assigned to the estimation and verification of carbon stocks in forests. Forestry practice has several long-established and reliable methods for the assessment of aboveground biomass; however we still miss accurate predictors of belowground biomass. A major windthrow event exposing the coarse root systems of Norway spruce trees allowed us to assess the effects of contrasting soil stone and water content on belowground allocation. Increasing stone content decreases root/shoot ratio, while soil waterlogging leads to an increase in this ratio. We constructed allometric relationships for belowground biomass prediction and were able to show that only soil waterlogging significantly impacts model parameters. We showed that diameter at breast height is a reliable predictor of belowground biomass and, once site-specific parameters have been developed, it is possible to accurately estimate belowground biomass in Norway spruce.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Empirical studies using satellite data and radiosondes have shown that precipitation increases with column water vapor (CWV) in the tropics, and that this increase is much steeper above some critical CWV value. Here, eight years of 1-min-resolution microwave radiometer and optical gauge data at Nauru Island are analyzed to better understand the relationships among CWV, column liquid water (CLW), and precipitation at small time scales. CWV is found to have large autocorrelation times compared with CLW and precipitation. Before precipitation events, CWV increases on both a synoptic-scale time period and a subsequent shorter time period consistent with mesoscale convective activity; the latter period is associated with the highest CWV levels. Probabilities of precipitation increase greatly with CWV. Given initial high CWV, this increased probability of precipitation persists at least 10–12 h. Even in periods of high CWV, however, probabilities of initial precipitation in a 5-min period remain low enough that there tends to be a lag before the start of the next precipitation event. This is consistent with precipitation occurring stochastically within environments containing high CWV, with the latter being established by a combination of synoptic-scale and mesoscale forcing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential interactive effects of future atmospheric CO2 concentrations and plant diversity loss on the functioning of belowground systems are still poorly understood. Using a microcosm greenhouse approach with assembled grassland plant communities of different diversity (1, 4 and 8 species), we explored the interactive effects between plant species richness and elevated CO2 (ambient and + 200 p.p.m.v. CO2) on earthworms and microbial biomass. We hypothesised that the beneficial effect of increasing plant species richness on earthworm performance and microbial biomass will be modified by elevated CO2 through impacts on belowground organic matter inputs, soil water availability and nitrogen availability. We found higher earthworm biomass in eight species mixtures under elevated CO2, and higher microbial biomass under elevated CO2 in four and eight species mixtures if earthworms were present. The results suggest that plant driven changes in belowground organic matter inputs, soil water availability and nitrogen availability explain the interactive effects of CO2 and plant diversity on the belowground compartment. The interacting mechanisms by which elevated CO2 modified the impact of plant diversity on earthworms and microorganisms are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled photosynthesis–stomatal conductance (A–gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm) and on the biochemical capacity. Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A–gs models to accurately capture the observed functional relationships A vs. gs and A/gsvs. gs in response to drought. Accounting for water stress in coupled A–gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress may be well represented in coupled A–gs models by imposing the highest limitation strength to gm, then to gs and finally to the biochemical capacity.