935 resultados para Piezoelectric actuators and sensors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We compare and contrast the effects of two distinctly different mechanisms of coupling (mechanical and electrical) on the parametric sensitivity of micromechanical sensors utilizing mode localization for sensor applications. For the first time, the strong correlation between mode localization and the phenomenon of 'eigenvalue loci-veering' is exploited for accurate quantification of the strength of internal coupling in mode localized sensors. The effects of capacitive coupling-spring tuning on the parametric sensitivity of electrically coupled resonators utilizing this sensing paradigm is also investigated and a mass sensor with sensitivity tunable by over 400% is realized. ©2009 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper details the design and enhanced electrical transduction of a bulk acoustic mode resonator fabricated in a commercial foundry MEMS process utilizing 2.5 μm gaps. The I-V characteristics of electrically addressed silicon resonators are often dominated by capacitive parasitics, inherent to hybrid technologies. This paper benchmarks a variety of drive and detection principles for electrostatically driven square-extensional mode resonators operating in air via analytical models accompanied by measurements of fabricated devices with the primary aim of enhancing the ratio of the motional to feedthrough current at nominal operating voltages. In view of ultimately enhancing the motional to feedthrough current ratio, a new detection technique that combines second harmonic capacitive actuation and piezoresistive detection is presented herein. This new method is shown to outperform previously reported methods utilizing voltages as low as ±3 V in air, providing a promising solution for low voltage CMOS-MEMS integration. To elucidate the basis of this improvement in signal output from measured devices, an approximate analytical model for piezoresistive sensing specific to the resonator topology reported here is also developed and presented. © 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cracking of ceramics with tetragonal perovskite grain structure is known to appear at different sites and scale level. The multiscale character of damage depends on the combined effects of electromechanical coupling, prevailing physical parameters and boundary conditions. These detail features are exhibited by application of the energy density criterion with judicious use of the mode I asymptotic and full field solution in the range of r/a = 10(-4) to 10(-2) where r and a are, respectively, the distance to the crack tip and half crack length. Very close to the stationary crack tip, bifurcation is predicted resembling the dislocation emission behavior invoked in the molecular dynamics model. At the macroscopic scale, crack growth is predicted to occur straight ahead with two yield zones to the sides. A multiscale feature of crack tip damage is provided for the first time. Numerical values of the relative distances and bifurcation angles are reported for the PZT-4 ceramic subjected to different electric field to applied stress ratio and boundary conditions that consist of the specification of electric field/mechanical stress, electric displacement/mechanical strain, and mixed conditions. To be emphasized is that the multiscale character of damage in piezoceramics does not appear in general. It occurs only for specific combinations of the external and internal field parameters, elastic/piezoelectric/dielectric constants and specified boundary conditions. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During April 8th-10th, 2008, the Aliance for Coastal Technology (ACT) partner institutions, University of Alaska Fairbanks (UAF), Alaska SeaLife Center (ASLC), and the Oil Spill Recovery Institute (OSRI) hosted a workshop entitled: "Hydrocarbon sensors for oil spill prevention and response" in Seward, Alaska. The main focus was to bring together 29 workshop participants-representing workshop managers, scientists, and technology developers - together to discuss current and future hydrocarbon in-situ, laboratory, and remote sensors as they apply to oil spill prevention and response. [PDF contains 28 pages] Hydrocarbons and their derivatives still remain one of the most important energy sources in the world. To effectively manage these energy sources, proper protocol must be implemented to ensure prevention and responses to oil spills, as there are significant economic and environmental costs when oil spills occur. Hydrocarbon sensors provide the means to detect and monitor oil spills before, during, and after they occur. Capitalizing on the properties of oil, developers have designed in-situ, laboratory, and remote sensors that absorb or reflect the electromagnetic energy at different spectral bands. Workshop participants identified current hydrocarbon sensors (in-situ, laboratory, and remote sensors) and their overall performance. To achieve the most comprehensive understanding of oil spills, multiple sensors will be needed to gather oil spill extent, location, movement, thickness, condition, and classification. No single hydrocarbon sensor has the capability to collect all this information. Participants, therefore, suggested the development of means to combine sensor equipment to effectively and rapidly establish a spill response. As the exploration of oil continues at polar latitudes, sensor equipment must be developed to withstand harsh arctic climates, be able to detect oil under ice, and reduce the need for ground teams because ice extent is far too large of an area to cover. Participants also recognized the need for ground teams because ice extent is far too large of an area to cover. Participants also recognized the need for the U.S. to adopt a multi-agency cooperation for oil spill response, as the majority of issues surounding oil spill response focuses not on the hydrocarbon sensors but on an effective contingency plan adopted by all agencies. It is recommended that the U.S. could model contingency planning based on other nations such as Germany and Norway. Workshop participants were asked to make recommendations at the conclusion of the workshop and are summarized below without prioritization: *Outreach materials must be delivered to funding sources and Congressional delegates regarding the importance of oil spill prevention and response and the development of proper sensors to achieve effective response. *Develop protocols for training resource managers as new sensors become available. *Develop or adopt standard instrument specifications and testing protocols to assist manufacturers in further developing new sensor technology. *As oil exploration continues at polar latitudes, more research and development should be allocated to develop a suite of instruments that are applicable to oil detection under ice.