626 resultados para Perlstein, Rick
Resumo:
We demonstrate a simple self-referenced single-shot method for simultaneously measuring two different arbitrary pulses, which can potentially be complex and also have very different wavelengths. The method is a variation of cross-correlation frequency-resolved optical gating (XFROG) that we call double-blind (DB) FROG. It involves measuring two spectrograms, both of which are obtained simultaneously in a single apparatus. DB FROG retrieves both pulses robustly by using the standard XFROG algorithm, implemented alternately on each of the traces, taking one pulse to be ?known? and solving for the other. We show both numerically and experimentally that DB FROG using a polarization-gating beam geometry works reliably and appears to have no nontrivial ambiguities.
Resumo:
The blood–brain barrier and a blood–cerebrospinal-fluid (CSF) barrier function together to isolate the brain from circulating drugs, toxins, and xenobiotics. The blood–CSF drug-permeability barrier is localized to the epithelium of the choroid plexus (CP). However, the molecular mechanisms regulating drug permeability across the CP epithelium are defined poorly. Herein, we describe a drug-permeability barrier in human and rodent CP mediated by epithelial-specific expression of the MDR1 (multidrug resistance) P glycoprotein (Pgp) and the multidrug resistance-associated protein (MRP). Noninvasive single-photon-emission computed tomography with 99mTc-sestamibi, a membrane-permeant radiopharmaceutical whose transport is mediated by both Pgp and MRP, shows a large blood-to-CSF concentration gradient across intact CP epithelium in humans in vivo. In rats, pharmacokinetic analysis with 99mTc-sestamibi determined the concentration gradient to be greater than 100-fold. In membrane fractions of isolated native CP from rat, mouse, and human, the 170-kDa Pgp and 190-kDa MRP are identified readily. Furthermore, the murine proteins are absent in CP isolated from their respective mdr1a/1b(−/−) and mrp(−/−) gene knockout littermates. As determined by immunohistochemical and drug-transport analysis of native CP and polarized epithelial cell cultures derived from neonatal rat CP, Pgp localizes subapically, conferring an apical-to-basal transepithelial permeation barrier to radiolabeled drugs. Conversely, MRP localizes basolaterally, conferring an opposing basal-to-apical drug-permeation barrier. Together, these transporters may coordinate secretion and reabsorption of natural product substrates and therapeutic drugs, including chemotherapeutic agents, antipsychotics, and HIV protease inhibitors, into and out of the central nervous system.
Resumo:
Association between Y chromosome haplotype variation and alcohol dependence and related personality traits was investigated in a large sample of psychiatrically diagnosed Finnish males. Haplotypes were constructed for 359 individuals using alleles at eight loci (seven microsatellite loci and a nucleotide substitution in the DYZ3 alphoid satellite locus). A cladogram linking the 102 observed haplotype configurations was constructed by using parsimony with a single-step mutation model. Then, a series of contingency tables nested according to the cladogram hierarchy were used to test for association between Y haplotype and alcohol dependence. Finally, using only alcohol-dependent subjects, we tested for association between Y haplotype and personality variables postulated to define subtypes of alcoholism—antisocial personality disorder, novelty seeking, harm avoidance, and reward dependence. Significant association with alcohol dependence was observed at three Y haplotype clades, with significance levels of P = 0.002, P = 0.020, and P = 0.010. Within alcohol-dependent subjects, no relationship was revealed between Y haplotype and antisocial personality disorder, novelty seeking, harm avoidance, or reward dependence. These results demonstrate, by using a fully objective association design, that differences among Y chromosomes contribute to variation in vulnerability to alcohol dependence. However, they do not demonstrate an association between Y haplotype and the personality variables thought to underlie the subtypes of alcoholism.
Resumo:
Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides. Class I RNRs are composed of two types of subunits: RNR1 contains the active site for reduction and the binding sites for the nucleotide allosteric effectors. RNR2 contains the diiron-tyrosyl radical (Y⋅) cofactor essential for the reduction process. Studies in yeast have recently identified four RNR subunits: Y1 and Y3, Y2 and Y4. These proteins have been expressed in Saccharomyces cerevisiae and in Escherichia coli and purified to ≈90% homogeneity. The specific activity of Y1 isolated from yeast and E. coli is 0.03 μmol⋅min−1⋅mg−1 and of (His)6-Y2 [(His)6-Y2-K387N] from yeast is 0.037 μmol⋅min−1⋅mg−1 (0.125 μmol⋅min−1⋅mg−1). Y2, Y3, and Y4 isolated from E. coli have no measurable activity. Efforts to generate Y⋅ in Y2 or Y4 using Fe2+, O2, and reductant have been unsuccessful. However, preliminary studies show that incubation of Y4 and Fe2+ with inactive E. coli Y2 followed by addition of O2 generates Y2 with a specific activity of 0.069 μmol⋅min−1⋅mg−1 and a Y⋅. A similar experiment with (His)6-Y2-K387N, Y4, O2, and Fe2+ results in an increase in its specific activity to 0.30 μmol⋅min−1⋅mg−1. Studies with antibodies to Y4 and Y2 reveal that they can form a complex in vivo. Y4 appears to play an important role in diiron-Y⋅ assembly of Y2.
Resumo:
Acknowledgments This work was funded by an Arts and Humanities Research Council (AH/K006029/1) grant awarded to Rick Knecht, Kate Britton and Charlotta Hillerdal (Aberdeen); an AHRC-LabEx award (AH/N504543/1) to KB, RK, Keith Dobney (Liverpool) and Isabelle Sidéra (Nanterre); the Carnegie Trust to the Universities of Scotland (travel grant to KB); and the Max Planck Institute for Evolutionary Anthropology. The onsite collection of samples was carried out by staff and students from the University of Aberdeen, volunteer excavators and the residents of Quinhagak. We had logistical and planning support for fieldwork by the Qanirtuuq Incorporated, Quinhagak, Alaska, and the people of Quinhagak, who we also thank for sampling permissions. Special thanks to Warren Jones and Qanirtuuq Incorporated (especially Michael Smith and Lynn Church), and to all Nunalleq project team members, in Aberdeen and at other institutions, particularly Charlotta Hillerdal and Edouard Masson-Maclean (Aberdeen) for comments on earlier versions of this manuscript, and also to Véronique Forbes, Ana Jorge, Carly Ameen and Ciara Mannion (Aberdeen) for their inputs. Thanks also to Michelle Alexander (York). Finally, thank you to Ian Scharlotta (Alberta) for inviting us to contribute to this special issue, to the Editor, and to three anonymous reviewers, whose suggestions and recommended changes to an earlier version of this manuscript greatly improved the paper.
Resumo:
The cytoskeleton plays an important role in neuronal morphogenesis. We have identified and characterized a novel actin-binding protein, termed Mayven, predominantly expressed in brain. Mayven contains a BTB (broad complex, tramtrack, bric-a-brac)/POZ (poxvirus, zinc finger) domain-like structure in the predicted N terminus and “kelch repeats” in the predicted C-terminal domain. Mayven shares 63% identity (77% similarity) with the Drosophila ring canal (“kelch”) protein. Somatic cell-hybrid analysis indicated that the human Mayven gene is located on chromosome 4q21.2, whereas the murine homolog gene is located on chromosome 8. The BTB/POZ domain of Mayven can self-dimerize in vitro, which might be important for its interaction with other BTB/POZ-containing proteins. Confocal microscopic studies of endogenous Mayven protein revealed a highly dynamic localization pattern of the protein. In U373-MG astrocytoma/glioblastoma cells, Mayven colocalized with actin filaments in stress fibers and in patchy cortical actin-rich regions of the cell margins. In primary rat hippocampal neurons, Mayven is highly expressed in the cell body and in neurite processes. Binding assays and far Western blotting analysis demonstrated association of Mayven with actin. This association is mediated through the “kelch repeats” within the C terminus of Mayven. Depolarization of primary hippocampal neurons with KCl enhanced the association of Mayven with actin. This increased association resulted in dynamic changes in Mayven distribution from uniform to punctate localization along neuronal processes. These results suggest that Mayven functions as an actin-binding protein that may be translocated along axonal processes and might be involved in the dynamic organization of the actin cytoskeleton in brain cells.
Resumo:
The ability of antigen-presenting cells to sample distinct intracellular compartments is crucial for microbe detection. Major histocompatibility complex class I and class II molecules sample the cytosol or the late endocytic compartment, allowing detection of microbial peptide antigens that arise in distinct intracellular compartments. In contrast, CD1a and CD1b molecules mediate the presentation of lipid and glycolipid antigens and differentially sample early recycling endosomes or late endocytic compartments, respectively, that contain distinct sets of lipid antigens. Here, we show that, unlike the other CD1 isoforms or major histocompatibility complex molecules that each sample restricted only intracellular compartments, CD1c is remarkable in that it distributes broadly throughout the endocytic system and is expressed in both recycling endosomes and late endocytic compartments. Further, in contrast to CD1b, which requires an acidic environment to function, antigen presentation by CD1c was able to overcome dependence on vesicular acidification. Because CD1c is expressed on essential antigen-presenting cells, such as epidermal Langerhans cells (in the absence of CD1b), or on B cells (without CD1a or -b), we suggest that CD1c molecules allow a comprehensive survey for lipid antigens throughout the endocytic system even in the absence of other CD1 isoforms.
Resumo:
Global declines in amphibians likely have multiple causes, including widespread pesticide use. Our knowledge of pesticide effects on amphibians is largely limited to short-term (4-d) toxicity tests conducted under highly artificial conditions to determine lethal concentrations (LC50). We found that if we used slightly longer exposure times (10–16 d), low concentrations of the pesticide carbaryl (3–4% of LC504-d) killed 10–60% of gray treefrog (Hyla versicolor) tadpoles. If predatory cues also were present, the pesticide became 2–4 times more lethal, killing 60–98% of tadpoles. Thus, under more realistic conditions of increased exposure times and predatory stress, current application rates for carbaryl can potentially devastate gray treefrog populations. Further, because predator-induced stress is ubiquitous in animals and carbaryl's mode of action is common to many pesticides, these negative impacts may be widespread in nature.
Resumo:
Signaling events controlled by calcineurin promote cardiac hypertrophy, but the degree to which such pathways are required to transduce the effects of various hypertrophic stimuli remains uncertain. In particular, the administration of immunosuppressive drugs that inhibit calcineurin has inconsistent effects in blocking cardiac hypertrophy in various animal models. As an alternative approach to inhibiting calcineurin in the hearts of intact animals, transgenic mice were engineered to overexpress a human cDNA encoding the calcineurin-binding protein, myocyte-enriched calcineurin-interacting protein-1 (hMCIP1) under control of the cardiac-specific, α-myosin heavy chain promoter (α-MHC). In unstressed mice, forced expression of hMCIP1 resulted in a 5–10% decline in cardiac mass relative to wild-type littermates, but otherwise produced no apparent structural or functional abnormalities. However, cardiac-specific expression of hMCIP1 inhibited cardiac hypertrophy, reinduction of fetal gene expression, and progression to dilated cardiomyopathy that otherwise result from expression of a constitutively active form of calcineurin. Expression of the hMCIP1 transgene also inhibited hypertrophic responses to β-adrenergic receptor stimulation or exercise training. These results demonstrate that levels of hMCIP1 producing no apparent deleterious effects in cells of the normal heart are sufficient to inhibit several forms of cardiac hypertrophy, and suggest an important role for calcineurin signaling in diverse forms of cardiac hypertrophy. The future development of measures to increase expression or activity of MCIP proteins selectively within the heart may have clinical value for prevention of heart failure.
An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression
Resumo:
The cDNA microarray is one technological approach that has the potential to accurately measure changes in global mRNA expression levels. We report an assessment of an optimized cDNA microarray platform to generate accurate, precise and reliable data consistent with the objective of using microarrays as an acquisition platform to populate gene expression databases. The study design consisted of two independent evaluations with 70 arrays from two different manufactured lots and used three human tissue sources as samples: placenta, brain and heart. Overall signal response was linear over three orders of magnitude and the sensitivity for any element was estimated to be 2 pg mRNA. The calculated coefficient of variation for differential expression for all non-differentiated elements was 12–14% across the entire signal range and did not vary with array batch or tissue source. The minimum detectable fold change for differential expression was 1.4. Accuracy, in terms of bias (observed minus expected differential expression ratio), was less than 1 part in 10 000 for all non-differentiated elements. The results presented in this report demonstrate the reproducible performance of the cDNA microarray technology platform and the methods provide a useful framework for evaluating other technologies that monitor changes in global mRNA expression.
Resumo:
Back Row: Steve King, Ed Pollister, Ed Wojtys, Mike Lantry, Jeff Spahn, Carl Russ, Kurt Kampe, Mark Jacoby, Tom Jenson
8th Row: Rick VanTongeren, Rick Jekel, Glenn Franklin, Lin Hardin, Dennis Franks, Bill Hoban, Roy Burks, Dave Metz, Mark McClain
7th Row: Dave Brown, Dennis Franklin, Gil Chapman, Jeff Perlinger, C.J. Kupec, Greg DenBoer, Steve Strinko, Chuck Heater, Pat Tumpane
6th Row: Norm Long, John Carpenter, Larry Banks, Kevin Masterson, Jim Lyall, Doug McKenzie, Jim Johnston, James Armour, John Thomas
5th Row: Jon Cederberg, Dave Brandon, Mike Day, Art Fediuk,John Cherry, Greg Koss, Don Warner, Ron Szydlowski,
4th Row: Larry Johnson, Walt Sexton, Craig Mutch, Gary Hainrihar, Doug Trozak, Walt Williamson, Don Coleman, Jovan Vercel, Barry Dotzbauer
3rd Row: Dave Elliott, Tom Slade, Harry Banks, Kevin Casey, Mike Hoban, Paul Seal, Dave Gallalgher, Ed Shuttlesworth, Bob Thornbladh, Tom Drake, Larry Gustafson
2nd Row: John Pighee, Jerry Schumacher, Tom Kee, Tom Coyle, Fred Grambau, Paul Seymour, Clint Spearman, Bill Hart, Greg Ellis, Tony Smith, Clint Haslerig
Front Row: Tom Poplawski, Larry Cipa, John Daniels, Don Eaton, Dave Zucarelli, Gary Coakley, Randy Logan, David (Bo) Rather, Alan Walker, Jim Coode
Resumo:
Back Row: Phil Andrews, Jerry Vogele, Pete Traber, Jim Smith, Rick White, Steve Anderson, Jerry Szara, Mark Elzinga, Rich McAuliffe, Jerry Zuver, Steve Graves, Jim Hackett, Jack Heffernan, Eric Phelps Roger Szafranski
7th Row: Dave Devich, Al Wheeler, Mike Coyne, Jerry Collins, Jack Fairbanks, Pete Paras, Phil Brumbaugh, Jim White, Greg Boik, Gary Zolciak, Jim Hall, John Hennessy, Jim Bolden, Bob Lytle, Bob Furgerson
6th Row: Dan Jilek, Rich Kaminski, Kirk Lewis, Greg Morton, Mike Holmes, Chuck Randolph, Greg Strinko, Les Miles, Frank Moore, Jay Rau, Jim Czirr, Mike Strabley, Matt Caputo, Rick Koschalk, Darrell Truitt
5th Row: Dave Whiteford, Gordon Bell, Tim Davis, Keith Johnson, Calvin O'Neal, Tom Jensen, Bill Hoban, Steve King, Mike Lantry, George Przygodski, Craig McMullen, Don Dufek, Eduardo Gonzalez, Bob Wood, Bill Heneveld
4th Row: Senior manager Jim Bueter, Kurt Kampe, Glenn Franklin, Pat Tumpane, Jeff Perlinger, Dennis Franks, Dave Metz, Steve Strinko, Greg DenBoer, Chuck Heater, Dave Brown, Norm Long, Ed Pollister, Mark Jacoby, Jeff Spahn, Rob Dudzik, John Ceddia, assistant coach Jack Harbaugh
3rd Row: Assistant coach George Mans, assistant coach Gary Moeller, Doug MacKenzie, Larry Banks, Dave Brandon, Carl Russ, Art Fediuk, Jim Armour, John Cherry, Jim Lyall, Mike Day, John Thomas, Jovan Vercel, Gil Chapman, Roy Burks, Dennis Franklin, Bob Lang, assistant coach Elliot Uzelac
2nd Row: Assistant coach Tirrel Burton, assistant coach Frank Maloney, Bob Thornbladh, Doug Troszak, Don Eaton, Larry Cipa, Don Coleman, Ed Shuttlesworth, Dave Gallagher, Paul Seal, Jim Coode, Mike Hoban, Curtis Tucker, Walt Williamson, Gary Hainrihar, Larry Johnson, Head Coach Bo Schembechler, assistant coach Chuck Stobart
Front Row: Assistant coach Jerry Hanlon, Ron Szydlowski, Dave Elliott, Geoff Steger, Greg Koss, Tom Slade, Harry Banks, Clint Haslerig, Larry Gustafson, Barry Dotzauer, Don Warner, Tom Drake, Craig Mutch, Kevin Casey, Jon Cederberg, assistant coach Dennis Brown