818 resultados para Perceived fundamental motor skill competence
Resumo:
Overweight and obesity are a significant cause of poor health worldwide, particularly in conjunction with low levels of physical activity (PA). PA is health-protective and essential for the physical growth and development of children, promoting physical and psychological health while simultaneously increasing the probability of remaining active as an adult. However, many obese children and adolescents have a unique set of physiological, biomechanical, and neuromuscular barriers to PA that they must overcome. It is essential to understand the influence of these barriers on an obese child's motivation in order to exercise and tailor exercise programs to the special needs of this population. Chapter Outline • Introduction • Defining Physical Activity, Exercise, and Physical Fitness • Physical Activity, Physical Fitness, And Motor Competence In Obese Children • Physical Activity and Obesity in Children • Physical Fitness in Obese Children • Balance and Gait in Obese Children • Motor Competence in Obese Children • Physical Activity Guidelines for Obese Children • Clinical Assessment of the Obese Child • Physical Activity Characteristics: Mode • Physical Activity Characteristics: Intensity • Physical Activity Characteristics: Frequency • Physical Activity Characteristics: Duration • Conclusion
Resumo:
Aims and objectives. This purpose of this study was to describe the process of expertise acquisition in nephrology nursing practice. Background. It has been recognized for a number of decades that experts, compared with other practitioners in a number of professions and occupations, are the most knowledgeable and effective, in terms of both the quantity and quality of output. Studies relating to expertise have been undertaken in a range of nursing contexts and specialties; to date, however, none have been undertaken which focus on nephrology nursing. Design. This study, using grounded theory methodology, took place in one renal unit in New South Wales, Australia and involved six non-expert and 11 expert nurses. Methods. Simultaneous data collection and analysis took place using participant observation, semi-structured interviews and review of nursing documentation. Findings. The study revealed a three-stage skills-acquisitive process that was identified as non-expert, experienced non-expert and expert stages. Each stage was typified by four characteristics, which altered during the acquisitive process; these were knowledge, experience, skill and focus. Conclusion. This was the first study to explore nephrology nursing expertise and uncovered new aspects of expertise not documented in the literature and it also made explicit other areas, which had only been previously implied. Relevance to clinical practice. Of significance to nursing, the exercise of expertise is a function of the recognition of expertise by others and it includes the blurring of the normal boundaries of professional practice. © 2006 Blackwell Publishing Ltd.
Resumo:
The practice of robotics and computer vision each involve the application of computational algorithms to data. The research community has developed a very large body of algorithms but for a newcomer to the field this can be quite daunting. For more than 10 years the author has maintained two open-source MATLAB® Toolboxes, one for robotics and one for vision. They provide implementations of many important algorithms and allow users to work with real problems, not just trivial examples. This new book makes the fundamental algorithms of robotics, vision and control accessible to all. It weaves together theory, algorithms and examples in a narrative that covers robotics and computer vision separately and together. Using the latest versions of the Toolboxes the author shows how complex problems can be decomposed and solved using just a few simple lines of code. The topics covered are guided by real problems observed by the author over many years as a practitioner of both robotics and computer vision. It is written in a light but informative style, it is easy to read and absorb, and includes over 1000 MATLAB® and Simulink® examples and figures. The book is a real walk through the fundamentals of mobile robots, navigation, localization, arm-robot kinematics, dynamics and joint level control, then camera models, image processing, feature extraction and multi-view geometry, and finally bringing it all together with an extensive discussion of visual servo systems.
Resumo:
Data from Growing Up in Australia: The Longitudinal Study of Australian Children is used to examine the associations between playgroup participation and the outcomes for children aged 4 to 5 years. Controlling for a range of socio-economic and family characteristics, playgroup participation across the ages of 0-3 years was used to predict learning competence and social-emotional functioning outcomes at age 4-5 years. For learning competence, both boys and girls from disadvantaged families scored 3-4% higher if they attended playgroup when aged 0-1 and 2-3 years compared to boys and girls from disadvantaged families who did not attend playgroup. For social and emotional functioning, girls from disadvantaged families who attended playgroup when they were aged 0-1 and 2-3 years scored nearly 5% higher than those who did not attend. Demographic characteristics also showed that disadvantaged families were the families least likely to access these services. Despite data limitations, this study provides evidence that continued participation in playgroups is associated with better outcomes for children from disadvantaged families.
Resumo:
Concerns raised in educational reports about school science in terms of students. outcomes and attitudes, as well as science teaching practices prompted investigation into science learning and teaching practices at the foundational level of school science. Without science content and process knowledge, understanding issues of modern society and active participation in decision-making is difficult. This study contended that a focus on the development of the language of science could enable learners to engage more effectively in learning science and enhance their interest and attitudes towards science. Furthermore, it argued that explicit teaching practices where science language is modelled and scaffolded would facilitate the learning of science by young children at the beginning of their formal schooling. This study aimed to investigate science language development at the foundational level of school science learning in the preparatory-school with students aged five and six years. It focussed on the language of science and science teaching practices in early childhood. In particular, the study focussed on the capacity for young students to engage with and understand science language. Previous research suggests that students have difficulty with the language of science most likely because of the complexities and ambiguities of science language. Furthermore, literature indicates that tensions transpire between traditional science teaching practices and accepted early childhood teaching practices. This contention prompted investigation into means and models of pedagogy for learning foundational science language, knowledge and processes in early childhood. This study was positioned within qualitative assumptions of research and reported via descriptive case study. It was located in a preparatory-school classroom with the class teacher, teacher-aide, and nineteen students aged four and five years who participated with the researcher in the study. Basil Bernstein.s pedagogical theory coupled with Halliday.s Systemic Functional Linguistics (SFL) framed an examination of science pedagogical practices for early childhood science learning. Students. science learning outcomes were gauged by focussing a Hallydayan lens on their oral and reflective language during 12 science-focussed episodes of teaching. Data were collected throughout the 12 episodes. Data included video and audio-taped science activities, student artefacts, journal and anecdotal records, semi-structured interviews and photographs. Data were analysed according to Bernstein.s visible and invisible pedagogies and performance and competence models. Additionally, Halliday.s SFL provided the resource to examine teacher and student language to determine teacher/student interpersonal relationships as well as specialised science and everyday language used in teacher and student science talk. Their analysis established the socio-linguistic characteristics that promoted science competencies in young children. An analysis of the data identified those teaching practices that facilitate young children.s acquisition of science meanings. Positive indications for modelling science language and science text types to young children have emerged. Teaching within the studied setting diverged from perceived notions of common early childhood practices and the benefits of dynamic shifting pedagogies were validated. Significantly, young students demonstrated use of particular specialised components of school-science language in terms of science language features and vocabulary. As well, their use of language demonstrated the students. knowledge of science concepts, processes and text types. The young students made sense of science phenomena through their incorporation of a variety of science language and text-types in explanations during both teacher-directed and independent situations. The study informs early childhood science practices as well as practices for foundational school science teaching and learning. It has exposed implications for science education policy, curriculum and practices. It supports other findings in relation to the capabilities of young students. The study contributes to Systemic Functional Linguistic theory through the development of a specific resource to determine the technicality of teacher language used in teaching young students. Furthermore, the study contributes to methodology practices relating to Bernsteinian theoretical perspectives and has demonstrated new ways of depicting and reporting teaching practices. It provides an analytical tool which couples Bernsteinian and Hallidayan theoretical perspectives. Ultimately, it defines directions for further research in terms of foundation science language learning, ongoing learning of the language of science and learning science, science teaching and learning practices, specifically in foundational school science, and relationships between home and school science language experiences.
Resumo:
Use of ball projection machines in the acquisition of interceptive skill has recently been questioned. The use of projection machines in developmental and elite fast ball sports programmes is not a trivial issue, since they play a crucial role in reducing injury incidence in players and coaches. A compelling challenge for sports science is to provide theoretical principles to guide how and when projection machines might be used for acquisition of ball skills and preparation for competition in developmental and elite sport performance programmes. Here, we propose how principles from an ecological dynamics theoretical framework could be adopted by sports scientists, pedagogues and coaches to underpin the design of interventions, practice and training tasks, including the use of hybrid video-projection technologies. The assessment of representative learning design during practice may provide ways to optimize developmental programmes in fast ball sports and inform the principled use of ball projection machines.
Resumo:
Project-based learning (PBL) is widely used in engineering courses. The closer to real-life the project, the greater the relevance and depth of learning experienced by students. Formula Society of Automotive Engineering (FSAE) is a fine example of a team-based project modelled on real-life problems whereby each student team designs and builds a small race car for competitive evaluation. Queensland University of Technology (QUT) has participated in FSAE-Australia since 2004. Based on the success of the project, QUT has gone the additional step of introducing a motor-racing specialization (second major) to complement its mechanical engineering degree. In this paper, the benefits of teaching motor-racing engineering through real-life projects are presented together with a discussion of the challenges faced and how they have been addressed. In order to validate the authors' observations on the teaching approaches used, student feedback was solicited through QUT's online learning experience survey (LEX), as well as a customized paper-based survey. The results of the surveys are analysed and discussed in this paper.