967 resultados para Peak Detector,
Resumo:
This paper presents the analysis and the design of a peak-current-controlled high-power-factor boost rectifier, with slope compensation, operating at constant frequency. The input current shaping is achieved, with continuous inductor current mode, with no multiplier to generate a current reference. The resulting overall circuitry is very simple, in comparison with the average-current-controlled boost rectifier. Experimental results are presented, taken from a laboratory prototype rated at 370 W and operating at 67 kHz. The measured power factor was 0.99, with a input current THD equal to 5.6%, for an input voltage THD equal to 2.26%.
Resumo:
Bose-Einstein correlations are studied in semileptonic (WW → qq̄lv) and fully hadronic (WW → qq̄qq̄) W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189 GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einstein correlations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW → qq̄lv events. The same Monte Carlo reproduces the correlations in the WW → qq̄qq̄ channel assuming independent fragmentation of the two W's. A variant of this model with Bose-Einstein correlations between decay products of different W's is disfavoured. (C) 2000 Published by Elsevier Science B.V.
Resumo:
We present the results of a search for the flavor-changing neutral current decay Bs 0 → μ+ μ-. using a data set with integrated luminosity of 240 pb-1 of pp̄ collisions at √s = 1.96 TeV collected with the D0 detector in run II of the Fermilab Tevatron collider. We find the upper limit on the branching fraction to be B(Bs 0 → μ+ π-) ≤ 5.0 × 10-7 at the 95% C.L. assuming no contributions from the decay Bd 0 → μ+ μ- in the signal region. This limit is the most stringent upper bound on the branching fraction Bs 0 → μ+ μ- to date. © 2005 The American Physical Society.
Resumo:
A novel instrument for measurement of X-ray intensity from mammography consists of a sensitive pyro-electric detector, a high-sensitivity, low-noise current-to-voltage converter, a microcontroller and a digital display. The heart of this device, and what makes it unique is the pyro-electric detector, which measures radiation by converting heat from absorbed incident X-rays into an electric current. This current is then converted to a voltage and digitised. The detector consists of a ferro-electric crystal; two types were tested; lithium tantalate and lithium niobate. X-ray measurement in mammography is challenging because of its relatively low photon energy range, from 11 keV to 15 keV equivalent mean energy, corresponding to a peak tube potential from 22 to 36 kV. Consequently, energy fluence rate or intensity is low compared with that of common diagnostic X-ray. The instrument is capable of measuring intensities as low as 0.25 mWm -2 with precision greater than 99%. Not only was the instrument capable of performing in the clinical environment, with high background electromagnetic interference and vibration, but its performance was not degraded after being subjected to 140 roentgen (3.6 × 10 -2 C kg -2 air) as measured by piezo-electric (d 33) or pyro-electric coefficients. © IFMBE 2005.
Resumo:
This paper proposes a novel and simple positive sequence detector (PSD), which is inherently self-adjustable to fundamental frequency deviations by means of a software-based PLL (Phase Locked Loop). Since the proposed positive sequence detector is not based on Fortescue's classical decomposition and no special input filtering is needed, its dynamic response may be as fast as one fundamental cycle. The digital PLL ensures that the positive sequence components can be calculated even under distorted waveform conditions and fundamental frequency deviations. For the purpose of validating the proposed models, the positive sequence detector has been implemented in a PC-based Power Quality Monitor and experimental results illustrate its good performance. The PSD algorithm has also been evaluated in the control loop of a Series Active Filter and simulation results demonstrate its effectiveness in a closed-loop system. Moreover, considering single-phase applications, this paper also proposes a general single-phase PLL and a Fundamental Wave Detector (FWD) immune to frequency variations and waveform distortions. © 2005 IEEE.
Resumo:
A comparative study was accomplished between two immobilization methodologies for the meldola's blue (MB), used to decrease the oxidation potential of NADH. The study was performed with glassy carbon electrode by electropolymerization of pyrrole and MB through the technique of cyclic voltammetry being evaluated the effect of the number of cycles to define the thickness and the stability of the film. With 25 cycles it was obtained the best result. They were also investigated the modification of the graphite electrode with film formed by the system sol-gel PPO 300 or PPO 4000 for the dip-coating, through two methods: occlusion and adsorption. The best method was it of adsorption of MB during 10 min, following by deposit of the film PPO 300, favored for the time of drying (24 hours). The adsorption of MB followed by PPO 300 deposition presented broader linear range than PPy methodology. ©2006 Sociedade Brasileira de Química.
Resumo:
This paper proposes a methodology for edge detection in digital images using the Canny detector, but associated with a priori edge structure focusing by a nonlinear anisotropic diffusion via the partial differential equation (PDE). This strategy aims at minimizing the effect of the well-known duality of the Canny detector, under which is not possible to simultaneously enhance the insensitivity to image noise and the localization precision of detected edges. The process of anisotropic diffusion via thePDE is used to a priori focus the edge structure due to its notable characteristic in selectively smoothing the image, leaving the homogeneous regions strongly smoothed and mainly preserving the physical edges, i.e., those that are actually related to objects presented in the image. The solution for the mentioned duality consists in applying the Canny detector to a fine gaussian scale but only along the edge regions focused by the process of anisotropic diffusion via the PDE. The results have shown that the method is appropriate for applications involving automatic feature extraction, since it allowed the high-precision localization of thinned edges, which are usually related to objects present in the image. © Nauka/Interperiodica 2006.
Resumo:
Interstitial solutes in body-centered cubic metals, such as oxygen in tantalum, produce ideally Snoek effects when they are in solutions enough diluted. However, for higher concentration of these solutes, more complex relaxation process can occur, as interaction between interstitial solutes and dislocations. Anelastic relaxation measurements were carried out in polycrystalline tantalum samples, using torsion pendulum inverted, operating between 300 K and 680 K and oscillation frequencies in the hertz bandwidth, for three different experimental sample conditions: as received sample, annealed and annealed followed by a treatment in an oxygen atmosphere. These measurements have revealed the following behavior: the intensity of the internal friction peak associated to matrix-interstitial interaction Ta-O decreased between the first run and the next runs, and this phenomenon did not occur for the others conditions. The variation of relaxation strength of Ta-O peak, with number of runs is due to a decrease of an amount of oxygen in solid solution, which can be associated with the precipitation of new phases in Ta sample and with the trapping of oxygen atoms by dislocations.
Resumo:
We report the results of a search for a narrow resonance decaying into two photons in 1.1fb-1 of data collected by the D0 experiment at the Fermilab Tevatron Collider during the period 20022006. We find no evidence for such a resonance and set a lower limit on the mass of a fermiophobic Higgs boson of mhf>100GeV at the 95% C.L. This exclusion limit exceeds those obtained in previous searches at the Fermilab Tevatron and covers a significant region of the parameter space B(hf→I I ) vs mhf which was not accessible at the CERN Large Electron-Positron Collider. © 2008 The American Physical Society.
Resumo:
In this Letter we report on a search for long-lived particles that decay into final states with two electrons or photons. Such long-lived particles arise in a variety of theoretical models, such as hidden valleys and supersymmetry with gauge-mediated breaking. By precisely reconstructing the direction of the electromagnetic shower we are able to probe much longer lifetimes than previously explored. We see no evidence of the existence of such long-lived particles and interpret this search as a quasi model-independent limit on their production cross section, as well as a limit on a long-lived fourth generation quark. © 2008 The American Physical Society.
Resumo:
We present a measurement of the ratio of positive to negative muon fluxes from cosmic ray interactions in the atmosphere, using data collected by the CMS detector both at ground level and in the underground experimental cavern at the CERN LHC. Muons were detected in the momentum range from 5 GeV/. c to 1 TeV/. c. The surface flux ratio is measured to be 1.2766±0.0032(stat.)±0.0032(syst.), independent of the muon momentum, below 100 GeV/. c. This is the most precise measurement to date. At higher momenta the data are consistent with an increase of the charge ratio, in agreement with cosmic ray shower models and compatible with previous measurements by deep-underground experiments. © 2010.
Resumo:
This study aimed to determine the influence of flexibility of the chair seat surface on the pressure peak and on the contact area during the execution of a task of handling an object on the seated position by individuals with spastic cerebral palsy. Ten individuals of both genders with diagnosis of spastic cerebral palsy, who had some control to voluntarily move the body and the upper limbs, participated in this study. Quantification of data was carried out in two experimental situations: (1) execution of a task of fitting with upper limbs, and with the individual placed on an adapted canvas seat; (2) execution of a task of fitting with the participant positioned on an adapted wooden seat. Data obtained were submitted to a non-parametric and descriptive statistical analysis using the Wilcoxon test. Results indicated that the use of canvas seat increased the contact area and decreased the pressure peak and the medio-lateral displacement of centre pressure on the seated posture. © 2011 Informa UK, Ltd.
Resumo:
We present a measurement of the W boson mass using data corresponding to 4.3fb -1 of integrated luminosity collected with the D0 detector during Run II at the Fermilab Tevatron pp̄ collider. With a sample of 1677394 W→eν candidate events, we measure M W=80.367±0. 026GeV. This result is combined with an earlier D0 result determined using an independent Run II data sample, corresponding to 1fb -1 of integrated luminosity, to yield M W=80.375±0.023GeV. © 2012 American Physical Society.
Resumo:
Purpose. Isokinetic tests are often applied to assess muscular strength and EMG activity, however the specific ranges of motion used in testing (fully flexed or extended positions) might be constrictive and/or be painful for patients with injuries or under-going rehabilitation. The aim of this study was to examine the effects of different ranges of motion (RoM) when determining maximal EMG during isokinetic knee flexion and extension with different types of contractions and velocities. Methods. Eighteen males had EMG activity recorded on the vastus lateralis, vastus medialis, semitendinosus and biceps femoris muscles during five maximal isokinetic concentric and eccentric contractions for the knee flexors and extensors at 60° • s -1 and 180° • s -1. The root mean square of EMG was calculated at three different ranges of motion: (1) a full range of motion (90°-20° [0° = full knee extension]); (2) a range of motion of 20° (between 60°-80° and 40°-60° for knee extension and flexion, respectively) and (3) at a 10° interval around the angle where peak torque is produced. EMG measurements were statistically analyzed (ANOVA) to test for the range of motion, contraction velocity and contraction speed effects. Coefficients of variation and Pearson's correlation coefficients were also calculated among the ranges of motion. Results. Predominantly similar (p > 0.05) and well-correlated EMG results (r > 0.7, p ≤ 0.001) were found among the ranges of motion. However, a lower coefficient of variation was found for the full range of motion, while the 10° interval around peak torque at 180° • s -1 had the highest coefficient, regardless of the type of contraction. Conclusions. Shorter ranges of motion at around the peak torque angle provides a reliable indicator when recording EMG activity during maximal isokinetic parameters. It may provide a safer alternative when testing patients with injuries or undergoing rehabilitation.