999 resultados para Pb Zircon Data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The provenance of eolian dust supplied to deep-sea sediments has the potential to offer insights into changes in past atmospheric circulation. Specifically, measuring temporal changes in dust provenance can shed light on changes in the mean position of the Intertropical Convergence Zone (ITCZ), a region acting as a barrier separating wind-blown material derived from northern versus southern hemisphere sources. Here we have analyzed Nd, Sr, and Pb isotope ratios in the operationally-defined detrital component extracted from deep-sea sediments in the eastern equatorial Pacific (EEP) along a meridional transect at 110°W from 3°S to 7°N (ODP Leg 138, sites 848-853). Sr isotope results show that barite Sr has a significant influence on 87Sr/86Sr isotope ratios of samples in the upwelling zone of the EEP. However, sites located >3° or more away from the equator (sites 852 and 853) are believed to not be affected by barite Sr and provide useful detrital Sr signals. 208Pb/206Pb and 207Pb/206Pb ratios in all cores fall into the Pb-isotope space of five potential dust sources (Asia, North and Central/South America, Sahara, and Australia), with no distinct isotopic fingerprinting of the dominant source(s). epsilon-Nd values were most valuable for discerning detrital source provenance, and their values at all sites, ranging from ~5.46 to ~3.25, were more unradiogenic for sediments deposited during the last glacial than for those deposited during the Holocene. There are distinct latitudinal trends in the epsilon-Nd values, with more radiogenic values further south and less radiogenic values further north, excluding site 848. This distinction holds true for both Holocene and last glacial periods. For the most southerly site, 848, we invoke, for the first time, a distinct southern hemisphere Australian source as being responsible for the unradiogenic Nd isotope ratios. Both average last glacial and Holocene epsilon-Nd values show similar sharp gradients along the transect between 5.29°N and 2.77°N, suggesting little movement of the glacial ITCZ in the EEP. However, during the deglacial, this gradient is stronger and shifted further north between 5.29°N and 7.21°N, suggesting a more northerly, possibly stronger, deglacial ITCZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the collective monograph results of geological and geophysical studies in the Tadjura Rift carried out by conventional outboard instruments and from deep/sea manned submersibles "Pisces" in winter 1983-1984 are reported. Main features of rift tectonics, geology, petrology, and geochemistry of basalts from the rift are under consideration. An emphasis is made on lithology, stratigraphy, and geochemistry of bottom sediments. Roles of terrigenous, edafogenic, biogenic, and hydrothermal components in formation of bottom sediments from the rift zone are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of study of bottom sediments near Iceland and on the Jan Mayen Island are reported. It was found that in recent sediments chemical elements are mainly associated with pyro- and volcanoclastics. In some areas adjusted to deep-seated faults ancient iron-manganese crusts and sediments occur. They are rich in Ni, Co, V, Cu, Mo, Cd and other elements associated with endogenic matter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The onset of abundant ice-rafted debris (IRD) deposition in the Nordic Seas and subpolar North Atlantic Ocean 2.72 millions of years ago (Ma) is thought to record the Pliocene onset of major northern hemisphere glaciation (NHG) due to a synchronous advance of North American Laurentide, Scandinavian and Greenland ice-sheets to their marine calving margins during marine isotope stage (MIS) G6. Numerous marine and terrestrial records from the Nordic Seas region indicate that extensive ice sheets on Greenland and Scandinavia increased IRD inputs to these seas from 2.72 Ma. The timing of ice-sheet expansion on North America as tracked by IRD deposition in the subpolar North Atlantic Ocean, however, is less clear because both Europe and North America are potential sources for icebergs in this region. Moreover, cosmogenic-dating of terrestrial tills on North America indicate that the Laurentide Ice Sheet did not extend to ~39°N until 2.4 ±0.14 Ma, at least 180 ka after the onset of major IRD deposition at 2.72 Ma. To address this problem,we present the first detailed analysis of the geochemical provenance of individual sand-sized IRD deposited in the subpolar North Atlantic Ocean between MIS G6 and 100 (~2.72-2.52 Ma). IRD provenance is assessed using laser ablation lead (Pb) isotope analyses of single ice-rafted (>150 mm) feldspar grains. To track when an ice-rafting setting consistent with major NHG first occurred in the North Atlantic Ocean during the Pliocene intensification of NHG (iNHG), we investigate when the Pb-isotope composition (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) of feldspars deposited at DSDP Site 611 first resembles that determined for IRD deposited at this site during MIS 100, the oldest glacial for which there exists convincing evidence for widespread glaciation of North America. Whilst Quaternary-magnitude IRD fluxes exist at Site 611 during glacials from 2.72 Ma, we find that the provenance of this IRD is not constant. Instead, we find that the Pb isotope composition of IRD at our study site is not consistent with major NHG until MIS G2 (2.64 Ma). We hypothesise that IRD deposition in the North Atlantic Ocean prior to MIS G2 was dominated by iceberg calving from Greenland and Scandinavia. We further suggest that the grounding line of continental ice on Northeast America may not have extended onto the continental shelf and calved significant numbers of icebergs to the North Atlantic Ocean during glacials until 2.64 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arabian Sea off the Pakistan continental margin is characterized by one of the world's largest oxygen minimum zones (OMZ). The lithology and geochemistry of a 5.3 m long gravity core retrieved from the lower boundary of the modern OMZ (956 m water depth) were used to identify late Holocene changes in oceanographic conditions and the vertical extent of the OMZ. While the lower part of the core (535 - 465 cm, 5.04 - 4.45 cal kyr BP, Unit 3) is strongly bioturbated indicating oxic bottom water conditions, the upper part of the core (284 - 0 cm, 2.87 cal kyr BP to present, Unit 1) shows distinct and well-preserved lamination, suggesting anoxic bottom waters. The transitional interval from 465 to 284 cm (4.45 - 2.87 cal kyr BP, Unit 2) contains relicts of lamination which are in part intensely bioturbated. These fluctuations in bioturbation intensity suggest repetitive changes between anoxic and oxic/suboxic bottom-water conditions between 4.45 - 2.87 cal kyr BP. Barium excess (Baex) and total organic carbon (TOC) contents do not explain whether the increased TOC contents found in Unit 1 are the result of better preservation due to low BWO concentrations or if the decreased BWO concentration is a result of increased productivity. Changes in salinity and temperature of the outflowing water from the Red Sea during the Holocene influenced the water column stratification and probably affected the depth of the lower boundary of the OMZ in the northern Arabian Sea. Even if we cannot prove certain scenarios, we propose that the observed downward shift of the lower boundary of the OMZ was also impacted by a weakened Somali Current and a reduced transport of oxygen-rich Indian Central Water into the Arabian Sea, both as a response to decreased summer insolation and the continuous southward shift of the Intertropical Convergence Zone during the late Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.