912 resultados para Path formulation
Resumo:
Both advocacy for and critiques of the Human Genome Project assume a self-sustaining relationship between genetics and. medicalization. However, this assumption ignores the ways in which the meanings of genetic research are conditional on its position in sequences of events. Based, on analyses of three conditions for which at least one putative gene or genetic marker has been identified, this article argues that critical junctures in the institutional stabilization of phenotypes and the mechanisms that sustain such classifications over time configure the practices and meanings of genetic research. Path dependence is critical to understanding the lack of consistent fit between genetics and medlcalization.
Resumo:
This paper offers a contribution to contemporary studies of spatial planning. In particular, it problematises the relationship between neoliberal competitiveness and spatial planning. Neoliberal competitiveness is a hegemonic discourse in public policy as it (allegedly) provides the ‘path to economic nirvana’. However, commentators have critiqued its theoretical underpinnings and labelled it a ‘dangerous obsession’ for policy makers. Another set of literatures argues that spatial planning can be understood as a form of ‘neoliberal spatial governance’ and read in a ‘postpolitical’ framework that ‘privileges competitiveness’. Synthesising these debates this paper critically analyses the application and operationalisation of neoliberal competitiveness in Northern Ireland and Belfast. In focusing on this unique case study—a deeply divided society with a turbulent history—the paper takes the debate forward in arguing that rather than offering the ‘path to economic nirvana’ neoliberal competitiveness is a ‘postpolitical strategy’ and represents a ‘dangerous obsession’ for spatial planning.
Resumo:
System Dynamics enables modelling and simulation of highly non-linear feedback systems to predict future system behaviour. Parameter estimation and equation formulation are techniques in System Dynamics, used to retrieve the values of parameters or the equations for ?ows and/or variables. These techniques are crucial for the annotations and thereafter the simulation. This paper critically examines existing and well established approaches in parameter estimation and equation formulation along with their limitations, identifying performance gaps as well as providing directions for potential future research.
Resumo:
Background: The use of Objective Structured Clinical Examination (OSCE) in Pharmacy has been explored; however this is the first attempt in Queen’s University School of Pharmacy, Belfast to assess students via this method in a module where chemistry is the main discipline.
Aims: To devise an OSCE to assess undergraduate ability to check extemporaneously dispensed products for clinical and formulation errors. This activity also aims to consider whether it is a viable method of assessment in such a science-based class, from a staff and student perspective.
Method: Students rotated around a number of stations, performing a check of the product, corresponding prescription and formulation record sheet detailing the theory behind the formulation. They were assessed on their ability to spot intentional mistakes at each one.
Results: Of the 79 students questioned, 95% indicated that OSCE made them aware of the importance of the clinical check carried out by the pharmacist. Nearly all of the undergraduates (72 out of 79) felt that OSCE made them aware of the type of mistakes that students make in class. Most (5 out of 7) of the academic team members strongly agreed that it made students aware of ‘point of dispensing’ checks carried out by pharmacists, in addition to helping them to prepare for their exam.
Conclusion: OSCE assesses both scientific and formulation skills, and has increased the diversity of assessment of this module, bringing with it many additional benefits for the undergraduates since it measures their ability to exercise professional judgement in a time- constrained environment and, in this way, mirrors the conditions many pharmacists work within.
Resumo:
This paper describes the application of gene delivery vectors based on connecting together two well-defined low-generation poly(L-lysine) (PLL) dendrons using a disulfide-containing linker unit. We report that the transfection ability of these vectors in their own right is relatively low, because the low-generation number limits the endosomal buffering capacity. Importantly, however, we demonstrate that when applied in combination with Lipofectamine 2000 (TM), a vector from the cationic lipid family, these small cationic additives significantly enhance the levels of gene delivery (up to four-fold). Notably, the cationic additives have no effect on the levels of transfection observed with a cationic polymer, such as DEAE dextran. We therefore argue that the synergistic effects observed with Lipofectamine 2000 (TM) arise as a result of combining the delivery advantages of two different classes of vector within a single formulation, with our dendritic additives providing a degree of pH buffering within the endosome. As such, the data we present indicate that small dendritic structures, although previously largely overlooked for gene delivery owing to their inability to transfect in their own right, may actually be useful well-defined additives to well-established vector systems in order to enhance the gene delivery payload.
Resumo:
The reaction mechanism of CO and Fe2O3 in a chemical-looping combustion (CLC) was studied based on density functional theory (DFT) at B3LYP level in this paper. The structures of all reactants, intermediate, transition structures and products of this reaction had been optimized and characterized. The reaction path was validated by means of the intrinsic reaction coordinate (IRC) approach. The result showed that the reaction was divided into two steps, the adsorbed CO molecule on Fe 2O3 surface formed a medium state with one broken Fe-O bond in step1, and in step2, O atom broken here oxidized a subsequent CO molecule in the fuel reactor. Thus, Fe2O3 molecule transport O from air to oxide CO continually in the CLC process. The activation energy and rate coefficients of the two steps were also obtained.