895 resultados para Passive control, Biventricular support, Rotary pump, Mock circulation, Baroreceptor response
Resumo:
Background Managing large student cohorts can be a challenge for university academics, coordinating these units. Bachelor of Nursing programmes have the added challenge of managing multiple groups of students and clinical facilitators whilst completing clinical placement. Clear, time efficient and effective communication between coordinating academics and clinical facilitators is needed to ensure consistency between student and teaching groups and prompt management of emerging issues. Methods This study used a descriptive survey to explore the use of text messaging via a mobile phone, sent from coordinating academics to off-campus clinical facilitators, as an approach to providing direction and support. Results The response rate was 47.8% (n = 22). Correlations were found between the approachability of the coordinating academic and clinical facilitator perception that, a) the coordinating academic understood issues on clinical placement (r = 0.785, p < 0.001), and b) being part of the teaching team (r = 0.768, p < 0.001). Analysis of responses to qualitative questions revealed three themes: connection, approachability and collaboration. Conclusions This study demonstrates that use of regular text messages improves communication between coordinating academics and clinical facilitators. Findings suggest improved connection, approachability and collaboration between the coordinating academic and clinical facilitation staff.
Resumo:
In this paper, a demand-responsive decision support system is proposed by integrating the operations of coal shipment, coal stockpiles and coal railing within a whole system. A generic and flexible scheduling optimisation methodology is developed to identify, represent, model, solve and analyse the coal transport problem in a standard and convenient way. As a result, the integrated train-stockpile-ship timetable is created and optimised for improving overall efficiency of coal transport system. A comprehensive sensitivity analysis based on extensive computational experiments is conducted to validate the proposed methodology. The mathematical proposition and proof are concluded as technical and insightful advices for industry practice. The proposed methodology provides better decision making on how to assign rail rolling-stocks and upgrade infrastructure in order to significantly improve capacity utilisation with the best resource-effectiveness ratio. The proposed decision support system with train-stockpile-ship scheduling optimisation techniques is promising to be applied in railway or mining industry, especially as a useful quantitative decision making tool on how to use more current rolling-stocks or whether to buy additional rolling-stocks for mining transportation.
Resumo:
Increasing penetration of photovoltaic (PV) as well as increasing peak load demand has resulted in poor voltage profile for some residential distribution networks. This paper proposes coordinated use of PV and Battery Energy Storage (BES) to address voltage rise and/or dip problems. The reactive capability of PV inverter combined with droop based BES system is evaluated for rural and urban scenarios (having different R/X ratios). Results show that reactive compensation from PV inverters alone is sufficient to maintain acceptable voltage profile in an urban scenario (low resistance feeder), whereas, coordinated PV and BES support is required for the rural scenario (high resistance feeder). Constant as well as variable droop based BES schemes are analyzed. The required BES sizing and associated cost to maintain the acceptable voltage profile under both schemes is presented. Uncertainties in PV generation and load are considered, with probabilistic estimation of PV generation and randomness in load modeled to characterize the effective utilization of BES. Actual PV generation data and distribution system network data is used to verify the efficacy of the proposed method.
Resumo:
Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS–SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS–SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65–85% for hybrid PLS–SVM model respectively. Also it was found that the hybrid PLS–SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS–SVM model.
Resumo:
Voltage drop at network peak hours is a significant power quality problem in Low Voltage (LV) distribution feeders. Recently, voltage rise due to high penetration of Photovoltaic cells (PVs) has been creating a new power quality problem during noon periods. In this paper, a voltage control strategy is proposed for the household installed PVs to regulate the voltage along the LV feeder. For this purpose, each PV is controlled to exchange reactive power with the grid. A droop control method is utilized to coordinate the reactive power exchange of each PV. The proposed method is a decentralized local voltage support since it is based on only local measurements and does not require any communication with other PVs. The required converter and filter structure and control algorithms are proposed to ensure the dynamic performance of the system. The study focuses on 3-phase PVs. The network is studied at network peak and off-peak periods, separately. The efficacy of the proposed voltage support concept is verified through numerical and dynamic analyses with MATLAB and PSCAD/EMTDC.
Resumo:
Voltage rise and drop are the main power quality challenges in Low Voltage (LV) network with Renewable Energy (RE) generators. This paper proposes a new voltage support strategy based on coordination of multiple Distribution Static Synchronous Compensators (DSTATCOMs) using consensus algorithm. The study focuses on LV network with PV as the RE source for customers. The proposed approach applied to a typical residential LV network and its advantages are shown comparing with other voltage control strategies.
Resumo:
This study was a step forward in modeling, simulation and microcontroller implementation of a high performance control algorithm for the motor of a blood pump. The rotor angle is sensed using three Hall effect sensors and an algorithm is developed to obtain better angular resolution from the three signals for better discrete-time updates of the controller. The performance of the system was evaluated in terms of actual and reference speeds, stator currents and power consumption over a range of reference speeds up to 4000 revolutions per minute. The use of fewer low cost Hall effect sensors compared to expensive high resolution sensors could reduce the cost of blood pumps for total artificial hearts.
Resumo:
Effective machine fault prognostic technologies can lead to elimination of unscheduled downtime and increase machine useful life and consequently lead to reduction of maintenance costs as well as prevention of human casualties in real engineering asset management. This paper presents a technique for accurate assessment of the remnant life of machines based on health state probability estimation technique and historical failure knowledge embedded in the closed loop diagnostic and prognostic system. To estimate a discrete machine degradation state which can represent the complex nature of machine degradation effectively, the proposed prognostic model employed a classification algorithm which can use a number of damage sensitive features compared to conventional time series analysis techniques for accurate long-term prediction. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for the comparison of intelligent diagnostic test using five different classification algorithms. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state probability using the Support Vector Machine (SVM) classifier. The results obtained were very encouraging and showed that the proposed prognostics system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Resumo:
This paper presents a novel control strategy for velocity tracking of Permanent Magnet Synchronous Machines (PMSM). The model of the machine is considered within the port-Hamiltonian framework and a control is designed using concepts of immersion and invariance (I&I) recently developed in the literature. The proposed controller ensures internal stability and output regulation, and it forces integral action on non-passive outputs.
Resumo:
The objective of this experimental study is to capture the dynamic temporal processes that occur in changing work settings and to test how work control and individuals' motivational predispositions interact to predict reactions to these changes. To this aim, we examine the moderating effects of global self-determined and non-self-determined motivation, at different levels of work control, on participants' adaptation and stress reactivity to changes in workload during four trials of an inbox activity. Workload was increased or decreased at Trial 3, and adaptation to this change was examined via fluctuations in anxiety, coping, motivation, and performance. In support of the hypotheses, results revealed that, for non-self-determined individuals, low work control was stress-buffering and high work control was stress-exacerbating when predicting anxiety and intrinsic motivation. In contrast, for self-determined individuals, high work control facilitated the adaptive use of planning coping in response to a change in workload. Overall, this pattern of results demonstrates that, while high work control was anxiety-provoking and demotivating for non-self-determined individuals, self-determined individuals used high work control to implement an adaptive antecedent-focused emotion regulation strategy (i.e., planning coping) to meet situational demands. Other interactive effects of global motivation emerged on anxiety, active coping, and task performance. These results and their practical implications are discussed.
Resumo:
Karasek's Job Demand-Control model proposes that control mitigates the positive effects of work stressors on employee strain. Evidence to date remains mixed and, although a number of individual-level moderators have been examined, the role of broader, contextual, group factors has been largely overlooked. In this study, the extent to which control buffered or exacerbated the effects of demands on strain at the individual level was hypothesized to be influenced by perceptions of collective efficacy at the group level. Data from 544 employees in Australian organizations, nested within 23 workgroups, revealed significant three-way cross-level interactions among demands, control and collective efficacy on anxiety and job satisfaction. When the group perceived high levels of collective efficacy, high control buffered the negative consequences of high demands on anxiety and satisfaction. Conversely, when the group perceived low levels of collective efficacy, high control exacerbated the negative consequences of high demands on anxiety, but not satisfaction. In addition, a stress-exacerbating effect for high demands on anxiety and satisfaction was found when there was a mismatch between collective efficacy and control (i.e. combined high collective efficacy and low control). These results provide support for the notion that the stressor-strain relationship is moderated by both individual- and group-level factors.
Resumo:
Port-Hamiltonian Systems (PHS) have a particular form that incorporates explicitly a function of the total energy in the system (energy function) and also other functions that describe structure of the system in terms of energy distribution. For PHS, the product of the input and output variables gives the rate of energy change. This type of systems have the property that under certain conditions on the energy function, the system is passive; and thus, stable. Therefore, if one can design a controller such that the closed-loop system retains - or takes - a PHS form, such closed-loop system will inherit the properties of passivity and stability. In this paper, the classical model of marine craft is put into a PHS form. It is shown that models used for positioning control do not have a PHS form due to a kinematic transformation, but a control design can be done such that the closed-loop system takes a PHS form. It is further shown how integral action can be added and how the PHS-form can be exploited to provide a procedure for control design that ensures passivity and thus stability.
Resumo:
Voltage rise is the main issue which limits the capacity of Low Voltage (LV) network to accommodate more Renewable Energy (RE) sources. In addition, voltage drop at peak load period is a significant power quality concern. This paper proposes a new robust voltage support strategy based on distributed coordination of multiple distribution static synchronous compensators (DSTATCOMs). The study focuses on LV networks with PV as the RE source for customers. The proposed approach applied to a typical LV network and its advantages are shown comparing with other voltage control strategies.
Resumo:
This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.
Resumo:
This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.