981 resultados para Particle Number Concentration
Resumo:
Particle fluxes (including major components and grain size), and oceanographic parameters (near-bottom water temperature, current speed and suspended sediment concentration) were measured along the Cap de Creus submarine canyon in the Gulf of Lions (GoL; NW Mediterranean Sea) during two consecutive winter-spring periods (2009 2010 and 2010 2011). The comparison of data obtained with the measurements of meteorological and hydrological parameters (wind speed, turbulent heat flux, river discharge) have shown the important role of atmospheric forcings in transporting particulate matter through the submarine canyon and towards the deep sea. Indeed, atmospheric forcing during 2009 2010 and 2010 2011 winter months showed differences in both intensity and persistence that led to distinct oceanographic responses. Persistent dry northern winds caused strong heat losses (14.2 × 103 W m−2) in winter 2009 2010 that triggered a pronounced sea surface cooling compared to winter 2010 2011 (1.6 × 103 W m−2 lower). As a consequence, a large volume of dense shelf water formed in winter 2009 2010, which cascaded at high speed (up to ∼1 m s−1) down Cap de Creus Canyon as measured by a current-meter in the head of the canyon. The lower heat losses recorded in winter 2010 2011, together with an increased river discharge, resulted in lowered density waters over the shelf, thus preventing the formation and downslope transport of dense shelf water. High total mass fluxes (up to 84.9 g m−2 d−1) recorded in winter-spring 2009 2010 indicate that dense shelf water cascading resuspended and transported sediments at least down to the middle canyon. Sediment fluxes were lower (28.9 g m−2 d−1) under the quieter conditions of winter 2010 2011. The dominance of the lithogenic fraction in mass fluxes during the two winter-spring periods points to a resuspension origin for most of the particles transported down canyon. The variability in organic matter and opal contents relates to seasonally controlled inputs associated with the plankton spring bloom during March and April of both years.
Resumo:
In the n{body problem a central con guration is formed when the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration vector. Lindstrom showed for n = 3 and for n > 4 that if n ? 1 masses are located at xed points in the plane, then there are only a nite number of ways to position the remaining nth mass in such a way that they de ne a central con guration. Lindstrom leaves open the case n = 4. In this paper we prove the case n = 4 using as variables the mutual distances between the particles.
Resumo:
A plant regeneration method with cell suspension cultures of banana, and the effect of biobalistic on regeneration potential are described in this report. Somatic embryos of banana were obtained from indirect embryogenesis of male inflorescence of banana cultivar Maçã (AAB group). Part of the calluses formed (40%) showed embryogenic characteristics (nonfriable, compact and yellow color). The cell suspension, originated from embryogenic calluses, contained clusters of small tightly packed cells with dense cytoplasms, relatively large nuclei and very dense nucleoli. After four months of culture, somatic embryos started to regenerate. The maximum number of regenerated plants was observed between 45 and 60 days after embryo formation.In the first experiment, 401 plants were regenerated from approximately 10 mL of packed cells. In the second experiment, 399 plants were regenerated from a cell suspension six months older than that of the first experiment. Cell transformation using particle bombardment with three different plasmid constructions, containing the uid-A gene, resulted in a strong GUS expression five days after bombardment; however, plant regeneration from bombarded cells was much lower than nonbombarded ones.
Resumo:
Macrophage migration inhibitory factor (MIF) has recently been implicated in the pathogenesis of malarial anaemia. However, field studies have reported contradictory results on circulating MIF concentrations in patients with clinically overt Plasmodium falciparum malaria. We determined plasma MIF levels over time in 10 healthy volunteers during experimental P. falciparum infection. Under fully controlled conditions, MIF levels decreased significantly during early blood-stage infection and reached a nadir at day 8 post-infection. A decrease in the number of circulating lymphocytes, which are an important source of MIF production, paralleled the decrease in MIF levels. Monocyte/macrophage counts remained unchanged. At MIF nadir, the anti-inflammatory cytokine interleukin (IL)-10, which is an inhibitor of T-cell MIF production, was detectable in only 2 of 10 volunteers. Plasma concentrations of the pro-inflammatory cytokines IL-8 and IL-1beta were only marginally elevated. We conclude that circulating MIF levels decrease early in blood-stage malaria as a result of the decline in circulating lymphocytes.
Resumo:
Pigs are very often colonized by Staphylococcus aureus and transmission of such pig-associated S. aureus to humans can cause serious medical, hygiene, and economic problems. The transmission route of zoonotic pathogens colonizing farm animals to humans is not well established and bioaerosols could play an important role. The aim of this study was to assess the potential occupational risk of working with S. aureus-colonized pigs in Switzerland. We estimated the airborne contamination by S. aureus in 37 pig farms (20 nursery and 17 fattening units; 25 in summer, 12 in winter). Quantification of total airborne bacterial DNA, airborne Staphylococcus sp. DNA, fungi, and airborne endotoxins was also performed. In this experiment, the presence of cultivable airborne methicillin-resistant S. aureus (MRSA) CC398 in a pig farm in Switzerland was reported for the first time. Airborne methicillin-sensitive S. aureus (MSSA) was found in ~30% of farms. The average airborne concentration of DNA copy number of total bacteria and Staphylococcus sp. measured by quantitative polymerase chain reaction was very high, respectively reaching values of 75 (± 28) × 10(7) and 35 (± 9.8) × 10(5) copy numbers m(-3) in summer and 96 (± 19) × 10(8) and 40 (± 12) × 10(6) copy numbers m(-3) in winter. Total mean airborne concentrations of endotoxins (1298 units of endotoxin m(-3)) and fungi (5707 colony-forming units m(-3)) exceeded the Swiss recommended values and were higher in winter than in summer. In conclusion, Swiss pig farmers will have to tackle a new emerging occupational risk, which could also have a strong impact on public health. The need to inform pig farmers about biological occupational risks is therefore crucial.
Resumo:
Syttymistä ja palamisen etenemistä partikkelikerroksessa tutkitaan paloturvallisuuden parantamista sekä kiinteitä polttoaineita käyttävien polttolaitteiden toiminnan tuntemista ja kehittämistä varten. Tässä tutkimuksessa on tavoitteena kerätä yhteen syttymiseen ja liekkirintaman etenemiseen liittyviä kokeellisia ja teoreettisia tutkimustuloksia, jotka auttavat kiinteäkerrospoltto- ja -kaasutus-laitteiden kehittämisessä ja suunnittelussa. Työ on esitutkimus sitä seuraavalle kokeelliselle ja teoreettiselle osalle. Käsittelyssä keskitytään erityisesti puuperäisiin polttoaineisiin. Hiilidioksidipäästöjen vähentämistavoitteet sekä kiinteiden jätteiden energiakäytön lisääminen ja kaatopaikalle viennin vähentäminen aiheuttavat lähitulevaisuudessa kerrospolton lisääntymistä. Kuljetusmatkojen optimoinnin takia joudutaan rakentamaan melko pieniä polttolaitoksia, joissa kerrospolttotekniikka on edullisin vaihtoehto. Syttymispisteellä tarkoitetaan Semenovin määritelmän mukaan tilaa ja ajankohtaa, jolloin polttoaineen ja hapen reaktioissa muodostuva nettoenergia aikayksikössä on yhtäsuuri kuin ympäristöön siirtyvä nettoenergiavirta. Itsesyttyminen tarkoittaa syttymistä ympäristön lämpötilan tai paineen suurenemisen seurauksena. Pakotettu syttyminen tapahtuu, kun syttymispisteen läheisyydessä on esimerkiksi liekki tai hehkuva kiinteä kappale, joka aiheuttaa paikallisen syttymisen ja syttymisrintaman leviämisen muualle polttoaineeseen. Kokeellinen tutkimus on osoittanut tärkeimmiksi syttymiseen ja syttymisrintaman etenemiseen vaikuttaviksi tekijöiksi polttoaineen kosteuden, haihtuvien aineiden pitoisuuden ja lämpöarvon, partikkelikerroksen huokoisuuden, partikkelien koon ja muodon, polttoaineen pinnalle tulevan säteilylämpövirran tiheyden, kaasun virtausnopeuden kerroksessa, hapen osuuden ympäristössä sekä palamisilman esilämmityksen. Kosteuden lisääntyminen suurentaa syttymisenergiaa ja -lämpötilaa sekä pidentää syttymisaikaa. Mitä enemmän polttoaine sisältää haihtuvia aineita sitä pienemmässä lämpötilassa se syttyy. Syttyminen ja syttymisrintaman eteneminen ovat sitä nopeampia mitä suurempi on polttoaineen lämpöarvo. Kerroksen huokoisuuden kasvun on havaittu suurentavan palamisen etenemisnopeutta. Pienet partikkelit syttyvät yleensä nopeammin ja pienemmässä lämpötilassa kuin suuret. Syttymisrintaman eteneminen nopeutuu partikkelien pinta-ala - tilavuussuhteen kasvaessa. Säteilylämpövirran tiheys on useissa polttosovellutuksissa merkittävin lämmönsiirtotekijä, jonka kasvu luonnollisesti nopeuttaa syttymistä. Ilman ja palamiskaasujen virtausnopeus kerroksessa vaikuttaa konvektiiviseen lämmönsiirtoon ja hapen pitoisuuteen syttymisvyöhykkeellä. Ilmavirtaus voi jäähdyttää ja kuumankaasun virtaus lämmittää kerrosta. Hapen osuuden kasvaminen nopeuttaa syttymistä ja liekkirintaman etenemistä kunnes saavutetaan tila, jota suuremmilla virtauksilla ilma jäähdyttää ja laimentaa reaktiovyöhykettä. Palamisilman esilämmitys nopeuttaa syttymisrintaman etenemistä. Syttymistä ja liekkirintaman etenemistä kuvataan yleensä empiirisillä tai säilyvyysyhtälöihin perustuvilla malleilla. Empiiriset mallit perustuvat mittaustuloksista tehtyihin korrelaatioihin sekä joihinkin tunnettuihin fysikaalisiin lainalaisuuksiin. Säilyvyysyhtälöihin perustuvissa malleissa systeemille määritetään massan, energian, liikemäärän ja alkuaineiden säilymisyhtälöt, joiden nopeutta kuvaavien siirtoyhtälöiden muodostamiseen käytetään teoreettisella ja kokeellisella tutkimuksella saatuja yhtälöitä. Nämä mallinnusluokat ovat osittain päällekkäisiä. Pintojen syttymistä kuvataan usein säilyvyysyhtälöihin perustuvilla malleilla. Partikkelikerrosten mallinnuksessa tukeudutaan enimmäkseen empiirisiin yhtälöihin. Partikkelikerroksia kuvaavista malleista Xien ja Liangin hiilipartikkelikerroksen syttymiseen liittyvä tutkimus ja Gortin puun ja jätteen polttoon liittyvä reaktiorintaman etenemistutkimus ovat lähimpänä säilyvyysyhtälöihin perustuvaa mallintamista. Kaikissa malleissa joudutaan kuitenkin yksinkertaistamaan todellista tapausta esimerkiksi vähentämällä dimensioita, reaktioita ja yhdisteitä sekä eliminoimalla vähemmän merkittävät siirtomekanismit. Suoraan kerrospolttoa ja -kaasutusta palvelevia syttymisen ja palamisen etenemisen tutkimuksia on vähän. Muita tarkoituksia varten tehtyjen tutkimusten polttoaineet, kerrokset ja ympäristöolosuhteet poikkeavat yleensä selvästi polttolaitteiden vastaavista olosuhteista. Erikokoisten polttoainepartikkelien ja ominaisuuksiltaan erilaisten polttoaineiden seospolttoa ei ole tutkittu juuri ollenkaan. Polttoainepartikkelien muodon vaikutuksesta on vain vähän tutkimusta.Ilman kanavoitumisen vaikutuksista ei löytynyt tutkimuksia.
Resumo:
Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.
Resumo:
In this study, equations for the calculation of erosion wear caused by ash particles on convective heat exchanger tubes of steam boilers are presented. Anew, three-dimensional test arrangement was used in the testing of the erosion wear of convective heat exchanger tubes of steam boilers. When using the sleeve-method, three different tube materials and three tube constructions could be tested. New results were obtained from the analyses. The main mechanisms of erosionwear phenomena and erosion wear as a function of collision conditions and material properties have been studied. Properties of fossil fuels have also been presented. When burning solid fuels, such as pulverized coal and peat in steam boilers, most of the ash is entrained by the flue gas in the furnace. In bubbling andcirculating fluidized bed boilers, particle concentration in the flue gas is high because of bed material entrained in the flue gas. Hard particles, such as sharp edged quartz crystals, cause erosion wear when colliding on convective heat exchanger tubes and on the rear wall of the steam boiler. The most important ways to reduce erosion wear in steam boilers is to keep the velocity of the flue gas moderate and prevent channelling of the ash flow in a certain part of the cross section of the flue gas channel, especially near the back wall. One can do this by constructing the boiler with the following components. Screen plates can beused to make the velocity and ash flow distributions more even at the cross-section of the channel. Shield plates and plate type constructions in superheaters can also be used. Erosion testing was conducted with three types of tube constructions: a one tube row, an inline tube bank with six tube rows, and a staggered tube bank with six tube rows. Three flow velocities and two particle concentrations were used in the tests, which were carried out at room temperature. Three particle materials were used: quartz, coal ash and peat ash particles. Mass loss, diameter loss and wall thickness loss measurements of the test sleeves were taken. Erosion wear as a function of flow conditions, tube material and tube construction was analyzed by single-variable linear regression analysis. In developing the erosion wear calculation equations, multi-variable linear regression analysis was used. In the staggered tube bank, erosion wear had a maximum value in a tube row 2 and a local maximum in row 5. In rows 3, 4 and 6, the erosion rate was low. On the other hand, in the in-line tube bank the minimum erosion rate occurred in tube row 2 and in further rows the erosion had an increasing value, so that in a six row tube bank, the maximum value occurred in row 6.
Resumo:
La distribución del número y del volumen de partículas, y la eficiencia de eliminación de las partículas y los sólidos en suspensión de diferentes efluentes y sus filtrados, fueron analizadas para estudiar si los filtros más usuales en los sistemas de riego localizado eliminan las partículas que pueden obturar los goteros. En la mayoría de los efluentes y filtrados fue mínimo el número de partículas con diámetros superiores a 20 μm. Sin embargo, al analizar la distribución del volumen de las partículas, en los filtrados aparecieron partículas de dimensiones superiores a la luz de los filtros de anillas y malla, siendo el filtro de arena el que retuvo las partículas de mayor diámetro. La eficiencia de los filtros para retener partículas se debió más al tipo de efluente que al filtro. Se verificó también que la distribución del número de partículas sigue una relación de tipo potencial. Analizando el exponente β de la ley potencial, se halló que los filtros no modificaron significativamente la distribución del número de partículas de los efluentes.
Resumo:
Abstract Background: Aerosol-mediated delivery of nano-based therapeutics to the lung has emerged as a promising alternative for treatment and prevention of lung diseases. Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention for such applications due to their biocompatibility and magnetic properties. However, information is lacking about the characteristics of nebulized SPIONs for use as a therapeutic aerosol. To address this need, we conducted a physicochemical characterization of nebulized Rienso, a SPION-based formulation for intravenous treatment of anemia. Methods: Four different concentrations of SPION suspensions were nebulized with a one-jet nebulizer. Particle size was measured in suspension by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and nanoparticle tracking analysis (NTA), and in the aerosol by a scanning mobility particle sizer (SMPS). Results: The average particle size in suspension as measured by TEM, PCS, and NTA was 9±2 nm, 27±7 nm, and 56±10 nm, respectively. The particle size in suspension remained the same before and after the nebulization process. However, after aerosol collection in an impinger, the suspended particle size increased to 159±46 nm as measured by NTA. The aerosol particle concentration increased linearly with increasing suspension concentration, and the aerodynamic diameter remained relatively stable at around 75 nm as measured by SMPS. Conclusions: We demonstrated that the total number and particle size in the aerosol were modulated as a function of the initial concentration in the nebulizer. The data obtained mark the first known independent characterization of nebulized Rienso and, as such, provide critical information on the behavior of Rienso nanoparticles in an aerosol. The data obtained in this study add new knowledge to the existing body of literature on potential applications of SPION suspensions as inhaled aerosol therapeutics.
Resumo:
Intravascular brachytherapy with beta sources has become a useful technique to prevent restenosis after cardiovascular intervention. In particular, the Beta-Cath high-dose-rate system, manufactured by Novoste Corporation, is a commercially available 90Sr 90Y source for intravascular brachytherapy that is achieving widespread use. Its dosimetric characterization has attracted considerable attention in recent years. Unfortunately, the short ranges of the emitted beta particles and the associated large dose gradients make experimental measurements particularly difficult. This circumstance has motivated the appearance of a number of papers addressing the characterization of this source by means of Monte Carlo simulation techniques.
Resumo:
The oxidative potential (OP) of particulate matter has been proposed as a toxicologically relevant metric. This concept is already frequently used for hazard characterization of ambient particles but it is still seldom applied in the occupational field. The objective of this study was to assess the OP in two different types of workplaces and to investigate the relationship between the OP and the physicochemical characteristics of the collected particles. At a toll station, at the entrance of a tunnel ('Tunnel' site), and at three different mechanical yards ('Depot' sites), we assessed particle mass (PM4 and PM2.5 and size distribution), number and surface area, organic and elemental carbon, polycyclic aromatic hydrocarbon (PAH), and four quinones as well as iron and copper concentration. The OP was determined directly on filters without extraction by using the dithiothreitol assay (DTT assay-OP(DTT)). The averaged mass concentration of respirable particles (PM4) at the Tunnel site was about twice the one at the Depot sites (173±103 and 90±36 µg m(-3), respectively), whereas the OP(DTT) was practically identical for all the sites (10.6±7.2 pmol DTT min(-1) μg(-1) at the Tunnel site; 10.4±4.6 pmol DTT min(-1) μg(-1) at the Depot sites). The OP(DTT) of PM4 was mostly present on the smallest PM2.5 fraction (OP(DTT) PM2.5: 10.2±8.1 pmol DTT min(-1) μg(-1); OP(DTT) PM4: 10.5±5.8 pmol DTT min(-1) μg(-1) for all sites), suggesting the presence of redox inactive components in the PM2.5-4 fraction. Although the reactivity was similar at the Tunnel and Depot sites irrespective of the metric chosen (OP(DTT) µg(-1) or OP(DTT) m(-3)), the chemicals associated with OP(DTT) were different between the two types of workplaces. The organic carbon, quinones, and/or metal content (Fe, Cu) were strongly associated with the DTT reactivity at the Tunnel site whereas only Fe and PAH were associated (positively and negatively, respectively) with this reactivity at the Depot sites. These results demonstrate the feasibility of measuring of the OP(DTT) in occupational environments and suggest that the particulate OP(DTT) is integrative of different physicochemical properties. This parameter could be a potentially useful exposure proxy for investigating particle exposure-related oxidative stress and its consequences. Further research is needed mostly to demonstrate the association of OP(DTT) with relevant oxidative endpoints in humans exposed to particles.
Resumo:
Viruses are among the most important pathogens present in water contaminated with feces or urine and represent a serious risk to human health. Four procedures for concentrating viruses from sewage have been compared in this work, three of which were developed in the present study. Viruses were quantified using PCR techniques. According to statistical analysis and the sensitivity to detect human adenoviruses (HAdV), JC polyomaviruses (JCPyV) and noroviruses genogroup II (NoV GGII): (i) a new procedure (elution and skimmed-milk flocculation procedure (ESMP)) based on the elution of the viruses with glycine-alkaline buffer followed by organic flocculation with skimmed-milk was found to be the most efficient method when compared to (ii) ultrafiltration and glycine-alkaline elution, (iii) a lyophilization-based method and (iv) ultracentrifugation and glycine-alkaline elution. Through the analysis of replicate sewage samples, ESMP showed reproducible results with a coefficient of variation (CV) of 16% for HAdV, 12% for JCPyV and 17% for NoV GGII. Using spiked samples, the viral recoveries were estimated at 30-95% for HAdV, 55-90% for JCPyV and 45-50% for NoV GGII. ESMP was validated in a field study using twelve 24-h composite sewage samples collected in an urban sewage treatment plant in the North of Spain that reported 100% positive samples with mean values of HAdV, JCPyV and NoV GGII similar to those observed in other studies. Although all of the methods compared in this work yield consistently high values of virus detection and recovery in urban sewage, some require expensive laboratory equipment. ESMP is an effective low-cost procedure which allows a large number of samples to be processed simultaneously and is easily standardizable for its performance in a routine laboratory working in water monitoring. Moreover, in the present study, a CV was applied and proposed as a parameter to evaluate and compare the methods for detecting viruses in sewage samples.
Resumo:
Viruses are among the most important pathogens present in water contaminated with feces or urine and represent a serious risk to human health. Four procedures for concentrating viruses from sewage have been compared in this work, three of which were developed in the present study. Viruses were quantified using PCR techniques. According to statistical analysis and the sensitivity to detect human adenoviruses (HAdV), JC polyomaviruses (JCPyV) and noroviruses genogroup II (NoV GGII): (i) a new procedure (elution and skimmed-milk flocculation procedure (ESMP)) based on the elution of the viruses with glycine-alkaline buffer followed by organic flocculation with skimmed-milk was found to be the most efficient method when compared to (ii) ultrafiltration and glycine-alkaline elution, (iii) a lyophilization-based method and (iv) ultracentrifugation and glycine-alkaline elution. Through the analysis of replicate sewage samples, ESMP showed reproducible results with a coefficient of variation (CV) of 16% for HAdV, 12% for JCPyV and 17% for NoV GGII. Using spiked samples, the viral recoveries were estimated at 30-95% for HAdV, 55-90% for JCPyV and 45-50% for NoV GGII. ESMP was validated in a field study using twelve 24-h composite sewage samples collected in an urban sewage treatment plant in the North of Spain that reported 100% positive samples with mean values of HAdV, JCPyV and NoV GGII similar to those observed in other studies. Although all of the methods compared in this work yield consistently high values of virus detection and recovery in urban sewage, some require expensive laboratory equipment. ESMP is an effective low-cost procedure which allows a large number of samples to be processed simultaneously and is easily standardizable for its performance in a routine laboratory working in water monitoring. Moreover, in the present study, a CV was applied and proposed as a parameter to evaluate and compare the methods for detecting viruses in sewage samples.
Resumo:
We analyze the influence of the single-particle structure on the neutron density distribution and the neutron skin in Ca, Ni, Zr, Sn, and Pb isotopes. The nucleon density distributions are calculated in the Hartree-Fock+BCS approach with the SLy4 Skyrme force. A close correlation is found between the quantum numbers of the valence neutrons and the changes in the position and the diffuseness of the nuclear surface, which in turn affect the neutron skin thickness. Neutrons in the valence orbitals with low principal quantum number and high angular momentum mainly displace the position of the neutron surface outwards, while neutrons with high principal quantum number and low angular momentum basically increase the diffuseness of the neutron surface. The impact of the valence shell neutrons on the tail of the neutron density distribution is discussed.