954 resultados para Parasite intestinal
Resumo:
Angiostrongylus costaricensis is a nematode that causes abdominal angiostrongyliasis, a widespread human parasitism in Latin America. This study aimed to characterize the protease profiles of different developmental stages of this helminth. First-stage larvae (L1) were obtained from the faeces of infected Sigmodon hispidus rodents and third-stage larvae (L3) were collected from mollusks Biomphalaria glabrata previously infected with L1. Adult worms were recovered from rodent mesenteric arteries. Protein extraction was performed after repeated freeze-thaw cycles followed by maceration of the nematodes in 40 mM Tris base. Proteolysis of gelatin was observed by zymography and found only in the larval stages. In L3, the gelatinolytic activity was effectively inhibited by orthophenanthroline, indicating the involvement of metalloproteases. The mechanistic class of the gelatinases from L1 could not be precisely determined using traditional class-specific inhibitors. Adult worm extracts were able to hydrolyze haemoglobin in solution, although no activity was observed by zymography. This haemoglobinolytic activity was ascribed to aspartic proteases following its effective inhibition by pepstatin, which also inhibited the haemoglobinolytic activity of L1 and L3 extracts. The characterization of protease expression throughout the A. costaricensis life cycle may reveal key factors influencing the process of parasitic infection and thus foster our understanding of the disease pathogenesis.
Resumo:
Laboratory diagnosis of intestinal schistosomiasis mansoni can be accomplished through various methods of stool examination to detect parasites, ranging from the most classic tests (Kato-Katz) to several methods that are still undergoing validation. This study was conducted to assess two new parasite identification methods for diagnosing schistosomiasis mansoni in residents of a low endemic area in the municipality of Maranguape, in the state of Ceará, Brazil using the Kato-Katz method as a reference and serology (enzyme-linked immunosorbent assay) for the screening of patients. The Kato-Katz, the saline gradient method and the Helmintex® method parasite identification methods were employed only in subjects who exhibited positive serologic tests. The test results were then analysed and treatment of positive individuals was subsequently performed. After comparing the test results, we observed that the saline gradient method and the Helmintex® method were more effective in diagnosing schistosomiasis mansoni in the study area compared with the Kato-Katz method.
Resumo:
Leprosy is a spectral disease exhibiting two polar sides, namely, lepromatous leprosy (LL) characterised by impaired T-cell responses and tuberculoid leprosy in which T-cell responses are strong. Proper T-cell activation requires signalling through costimulatory molecules expressed by antigen presenting cells and their ligands on T-cells. We studied the influence of costimulatory molecules on the immune responses of subjects along the leprosy spectrum. The expression of the costimulatory molecules was evaluated in in vitro-stimulated peripheral blood mononuclear cells of lepromatous and tuberculoid patients and healthy exposed individuals (contacts). We show that LL patients have defective monocyte CD86 expression, which likely contributes to the impairment of the antigen presentation process and to patients anergy. Accordingly, CD86 but not CD80 blockade inhibited the lymphoproliferative response to Mycobacterium leprae. Consistent with the LL anergy, there was reduced expression of the positive signalling costimulatory molecules CD28 and CD86 on the T-cells in these patients. In contrast, tuberculoid leprosy patients displayed increased expression of the negative signalling molecules CD152 and programmed death-1 (PD-1), which represents a probable means of modulating an exacerbated immune response and avoiding immunopathology. Notably, the contacts exhibited proper CD86 and CD28 expression but not exacerbated CD152 or PD-1 expression, suggesting that they tend to develop a balanced immunity without requiring immunosuppressive costimulatory signalling.
Resumo:
The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections.
Resumo:
A new ceratomyxid parasite was examined for taxonomic identification, upon being found infecting the gall bladder of Hemiodus microlepis (Teleostei: Hemiodontidae), a freshwater teleost collected from the Amazon River, Brazil. Light and transmission electron microscopy revealed elongated crescent-shaped spores constituted by two asymmetrical shell valves united along a straight sutural line, each possessing a lateral projection. The spores body measured 5.2 ± 0.4 µm (n = 25) in length and 35.5 ± 0.9 µm (n = 25) in total thickness. The lateral projections were asymmetric, one measuring 18.1 ± 0.5 µm (n = 25) in thickness and the other measuring 17.5 ± 0.5 µm (n = 25) in thickness. Two equal-sized subspherical polar capsules measuring 2.2 ± 0.3 µm in diameter were located at the same level, each possessing a polar filament with 5-6 coils. The sporoplasm was binucleate. Considering the morphometric data analyzed from the microscopic observations, as well as the host species and its geographical location, this paper describes a new myxosporean species, herein named Ceratomyxa microlepis sp. nov.; therefore representing the first description of a freshwater ceratomyxid from the South American region.
Resumo:
The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.
Resumo:
T cell factor-1 (Tcf-1) is a transcription factor that binds to a sequence motif present in several T cell-specific enhancer elements. In Tcf-1-deficient (Tcf-1-/-) mice, thymocyte development is partially blocked at the transition from the CD4-8+ immature single-positive stage to the CD4+8+ double-positive stage, resulting in a marked decrease of mature peripheral T cells in lymph node and spleen. We report here that the development of most intestinal TCR gamma delta+ cells and liver CD4+ NK1.1+TCR alpha beta+ (NK1+T) cells, which are believed to be of extrathymic origin, is selectively impaired in Tcf-1-/- mice. In contrast, thymic and thymus-derived (splenic) TCR gamma delta+ cells are present in normal numbers in Tcf-1-/- mice, as are other T cell subsets in intestine and liver. Collectively, our data suggest that Tcf-1 is differentially required for the development of some extrathymic T cell subsets, including intestinal TCR gamma delta+ cells and liver CD4+ NK1+T cells.
Resumo:
Mansonella ozzardi infections are common in the riverside communities along the Solimões, Negro and Purus Rivers in the state of Amazonas (AM). However, little is known about the presence of this parasite in communities located in regions bordering AM and the state of Acre. The prevalence rate of M. ozzardi infections was determined in blood samples from volunteers according to the Knott method. A total of 355 volunteers from six riverine communities were enrolled in the study and 65 (18.3%) were found to be infected with M. ozzardi. As expected, most of the infections (25%) occurred in individuals involved in agriculture, cattle rearing and fishing and an age/sex group analysis revealed that the prevalence increased beginning in the 40-50-years-of-age group and reached 33% in both sexes in individuals over 50 years of age. Based on the described symptomatology, articular pain and headache were found to be significantly higher among infected individuals (56 and 65% prevalence, respectively, p < 0.05). Sera from volunteers were subjected to ELISA using a cocktail of recombinant proteins from Onchocerca volvulus to evaluate the specificity of the test in an endemic M. ozzardi region. No cross-reactions between M. ozzardi-infected individuals and recombinant O. volvulusproteins were detected, thus providing information on the secure use of this particular cocktail in areas where these parasites are sympatric.
Resumo:
Clinical and laboratory risk factors for death from visceral leishmaniasis (VL) are relatively known, but quantitative real-time polymerase chain reaction (qPCR) might assess the role of parasite load in determining clinical outcome. The aim of this study was to identify risk factors, including parasite load in peripheral blood, for VL poor outcome among children. This prospective cohort study evaluated children aged ≤ 12 years old with VL diagnosis at three times: pre-treatment (T0), during treatment (T1) and post-treatment (T2). Forty-eight patients were included and 16 (33.3%) met the criteria for poor outcome. Age ≤ 12 months [relative risk (RR) 3.51; 95% confidence interval (CI) 1.89-6.52], tachydyspnoea (RR 3.46; 95% CI 2.19-5.47), bacterial infection (RR 3.08; 95% CI 1.27-7.48), liver enlargement (RR 3.00; 95% CI 1.44-6.23) and low serum albumin (RR 7.00; 95% CI 1.80-27.24) were identified as risk factors. qPCR was positive in all patients at T0 and the parasite DNA was undetectable in 76.1% of them at T1 and in 90.7% at T2. There was no statistical association between parasite load at T0 and poor outcome.
Resumo:
A cross-sectional study on the prevalence and morbidity of schistosomiasis was conducted in the main settlement of the municipality of Alhandra, in the southern coastal region of the state of Paraíba, in 2010. The results of this study were compared with the results of a previous study conducted in the same area in 1979. The systematic sampling per family conglomerate included approximately 10% of the resident population in the urban area of Alhandra. Faecal examinations were performed using the Kato-Katz method. The clinical forms of the disease were classified in accordance with FS Barbosa as Type I - intestinal form, Type II - hepatointestinal form and Type III - hepatosplenic form. The prevalence of the infection in 2010 was 10.05%, whereas in 1979 it was 46.6% among untreated patients. The percentages of the three clinical forms in 2010 were as follows: 95.3% Type I, 4.6% Type II and 0% Type III; in 1979, the percentages were 94.4%, 3% and 2.6% for Types I, II and III, respectively. In 1979, 6.07% of the Biomphalaria glabrata specimens (the intermediate host in this area) excreted cercariae, where in 2010 only 1.27% of the specimens caught excreted the parasite.
Resumo:
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.
Resumo:
Plasmodium falciparum originated in Africa, dispersed around the world as a result of human migration and had to adapt to several different indigenous anopheline mosquitoes. Anophelines from the New World are evolutionary distant form African ones and this probably resulted in a more stringent selection of Plasmodium as it adapted to these vectors. It is thought that Plasmodium has been genetically selected by some anopheline species through unknown mechanisms. The mosquito immune system can greatly limit infection and P. falciparum evolved a strategy to evade these responses, at least in part mediated by Pfs47, a highly polymorphic gene. We propose that adaptation of P. falciparum to new vectors may require evasion of their immune system. Parasites with a Pfs47 haplotype compatible with the indigenous mosquito vector would be able to survive and be transmitted. The mosquito antiplasmodial response could be an important determinant of P. falciparum population structure and could affect malaria transmission in the Americas.
Resumo:
Chagas disease, caused by the intracellular protozoan Trypanosoma cruzi, is a serious health problem in Latin America. During this parasitic infection, the heart is one of the major organs affected. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. When cells are infected with T. cruzi, they develop an inflammatory response, in which cyclooxygenase-2 (COX-2) catalyses rate-limiting steps in the arachidonic acid pathway. However, how the parasite interaction modulates COX-2 activity is poorly understood. In this study, the H9c2 cell line was used as our model and we investigated cellular and biochemical aspects during the initial 48 h of parasitic infection. Oscillatory activity of COX-2 was observed, which correlated with the control of the pro-inflammatory environment in infected cells. Interestingly, subcellular trafficking was also verified, correlated with the control of Cox-2 mRNA or the activated COX-2 protein in cells, which is directly connected with the assemble of stress granules structures. Our collective findings suggest that in the very early stage of the T. cruzi-host cell interaction, the parasite is able to modulate the cellular metabolism in order to survives.
Resumo:
The aim of this study was to analyse the infection dynamics ofAngiostrongylus cantonensisin its possible intermediate hosts over two years in an urban area in the state of Rio de Janeiro where the presence ofA. cantonensis had been previously recorded in molluscs. Four of the seven mollusc species found in the study were exotic.Bradybaena similariswas the most abundant, followed byAchatina fulica, Streptaxissp., Subulina octona, Bulimulus tenuissimus, Sarasinula linguaeformisand Leptinaria unilamellata. Only A. fulicaand B. similariswere parasitised by A. cantonensis and both presented co-infection with other helminths. The prevalence of A. cantonensisin A. fulicawas more than 50% throughout the study. There was an inverse correlation between the population size ofA. fulicaand the prevalence of A. cantonensisand abundance of the latter was negatively related to rainfall. The overall prevalence of A. cantonensisin B. similariswas 24.6%. A. fulicawas the most important intermediary host of A. cantonensisin the studied area andB. similariswas secondary in importance for A. cantonensistransmission dynamics.
Resumo:
The intestinal immune system hasthe complex task to protect the sterilecore of the organism against invasion.Most of invasive enterobacteria targetintestinal epithelial cells (IEC) inducingmajor damages to the mucosa.Shigella flexneri, by invading IECand inducing inflammatory responsesof the colonic mucosa, causes bacillarydysentery, a bloody diarrhea thatis endemic worldwide. The mechanismof entry of this bacterium is stilla matter of debate. Mcells participatingin sampling antigens from the gutlumen through Peyers patches arecommonly considered as the primarysite of entry of the bacteria. Once inthe lamina propria, Shigella can invadeIEC via their basolateral poleand spread from cell-to-cell leading tomassive tissue destruction. More recently,data are accumulating demonstratingthat bacteria can also enter thelamina propria directly via IEC, underscoringIEC as another gate of entry.In addition, the protective role ofsecretory IgA (SIgA) produced byplasmocytes of the lamina propria hasbeen established in shigellosis contextbut few is known about its role inmaintaining IEC monolayer integrity.Here, the impact of the bacterium wasstudied using polarized CaCo 2 cellmonolayer apically infected with avirulent strain of S. flexneri eitheralone or complexed with its cognateanti LPS SIgA. Parameters associatedwith the infection process includingcytokine measurements (IL-8, IL-18)and laser scanning confocal microscopydetection of Zonula Occludens-1, a tight junction (TJ) protein werestudied.We demonstrate that bacteriaare able to infect IEC through theirluminal-like pole as well, inducingthe complete disruption of TJ and thedestruction of the whole reconstitutedCaCo-2 cell monolayer. SIgA uponneutralization of bacteria led to themaintenance of TJ supporting IEC integrity,and the modulation of cytokinereleases. Together with anti-inflammatoryproperties of SIgA, thefact that apical bacteria can damagethe IEC without the intervention ofother cells such as Mcells offers newpossibilities in understanding thepathogenic mechanisms involved inshigellosis.