940 resultados para Parallel computing. Multilayer perceptron. OpenMP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para muitos, o ato de ensinar, era e continua a ser uma “arte”, em que os professores e os grandes mestres mais eficientes são aqueles que têm a capacidade e a arte de fazer passar as suas mensagens e conhecimentos, de forma simples e apelativa, independentemente da área de estudo. A informação relacionada com a aula, é cada vez mais digital, sendo importante, por parte dos docentes, o domínio de tecnologias de criação, organização e disponibilização de conteúdos. Essa partilha foi inicialmente possível pelas páginas Web e mais tarde pelas plataformas LMS (Learning Management System). Criar um Website era uma tarefa complicada quer ao nível do seu custo quer ao nível do domínio da tecnologia Web e era por vezes necessário contratar profissionais para o efeito. Surgiram então as CMS (Content Management System) que são tecnologias Open Source, que permitem a gestão de conteúdos. Neste sentido foi realizado um estudo com o objetivo de aferir sobre as competências dos professores no domínio da partilha de Gestão de Conteúdos Digitais. O presente estudo permitiu retirar conclusões sobre o potencial e aplicabilidade das CMS no ensino. O principal objetivo do presente estudo incidiu no potencial de distribuição e partilha de Recursos Educativos Digitais organizados sobre o ponto de vista pedagógico aos alunos. Foi ainda analisado e estudado o papel do Cloud Computing no processo de partilha colaborativa de documentos. Foi delineado como suporte à presente investigação um curso modelo que por sua vez foi implementado nas três principais CMS da atualidade e avaliado o potencial de cada uma neste contexto. Finalmente foram apresentadas as conclusões retiradas do presente estudo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terms using the knowledge base of DBpedia — a community effort to extract structured information from Wikipedia. Several approaches to extract semantic relatedness from Wikipedia using bag-of-words vector models are already available in the literature. The research presented in this paper explores a novel approach using paths on an ontological graph extracted from DBpedia. It is based on an algorithm for finding and weighting a collection of paths connecting concept nodes. This algorithm was implemented on a tool called Shakti that extract relevant ontological data for a given domain from DBpedia using its SPARQL endpoint. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are reported in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we exploit the nonlinear property of the SiC multilayer devices to design an optical processor for error detection that enables reliable delivery of spectral data of four-wave mixing over unreliable communication channels. The SiC optical processor is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Visible pulsed signals are transmitted together at different bit sequences. The combined optical signal is analyzed. Data show that the background acts as selector that picks one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as EXOR and three bit addition are demonstrated optically, showing that when one or all of the inputs are present, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed using four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all-optical processor for error detection and then provide an experimental demonstration of this idea. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes and reports the development of an open source solution for the integrated management of Infrastructure as a Service (IaaS) cloud computing resources, through the use of a common API taxonomy, to incorporate open source and proprietary platforms. This research included two surveys on open source IaaS platforms (OpenNebula, OpenStack and CloudStack) and a proprietary platform (Parallels Automation for Cloud Infrastructure - PACI) as well as on IaaS abstraction solutions (jClouds, Libcloud and Deltacloud), followed by a thorough comparison to determine the best approach. The adopted implementation reuses the Apache Deltacloud open source abstraction framework, which relies on the development of software driver modules to interface with different IaaS platforms, and involved the development of a new Deltacloud driver for PACI. The resulting interoperable solution successfully incorporates OpenNebula, OpenStack (reuses pre-existing drivers) and PACI (includes the developed Deltacloud PACI driver) nodes and provides a Web dashboard and a Representational State Transfer (REST) interface library. The results of the exchanged data payload and time response tests performed are presented and discussed. The conclusions show that open source abstraction tools like Deltacloud allow the modular and integrated management of IaaS platforms (open source and proprietary), introduce relevant time and negligible data overheads and, as a result, can be adopted by Small and Medium-sized Enterprise (SME) cloud providers to circumvent the vendor lock-in problem whenever service response time is not critical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we assess the performance of information-theoretic inspired risks functionals in multilayer perceptrons with reference to the two most popular ones, Mean Square Error and Cross-Entropy. The information-theoretic inspired risks, recently proposed, are: HS and HR2 are, respectively, the Shannon and quadratic Rényi entropies of the error; ZED is a risk reflecting the error density at zero errors; EXP is a generalized exponential risk, able to mimic a wide variety of risk functionals, including the information-thoeretic ones. The experiments were carried out with multilayer perceptrons on 35 public real-world datasets. All experiments were performed according to the same protocol. The statistical tests applied to the experimental results showed that the ubiquitous mean square error was the less interesting risk functional to be used by multilayer perceptrons. Namely, mean square error never achieved a significantly better classification performance than competing risks. Cross-entropy and EXP were the risks found by several tests to be significantly better than their competitors. Counts of significantly better and worse risks have also shown the usefulness of HS and HR2 for some datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring systems have traditionally been developed with rigid objectives and functionalities, and tied to specific languages, libraries and run-time environments. There is a need for more flexible monitoring systems which can be easily adapted to distinct requirements. On-line monitoring has been considered as increasingly important for observation and control of a distributed application. In this paper we discuss monitoring interfaces and architectures which support more extensible monitoring and control services. We describe our work on the development of a distributed monitoring infrastructure, and illustrate how it eases the implementation of a complex distributed debugging architecture. We also discuss several issues concerning support for tool interoperability and illustrate how the cooperation among multiple concurrent tools can ease the task of distributed debugging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Even though Software Transactional Memory (STM) is one of the most promising approaches to simplify concurrent programming, current STM implementations incur significant overheads that render them impractical for many real-sized programs. The key insight of this work is that we do not need to use the same costly barriers for all the memory managed by a real-sized application, if only a small fraction of the memory is under contention lightweight barriers may be used in this case. In this work, we propose a new solution based on an approach of adaptive object metadata (AOM) to promote the use of a fast path to access objects that are not under contention. We show that this approach is able to make the performance of an STM competitive with the best fine-grained lock-based approaches in some of the more challenging benchmarks. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapidly increasing computing power, available storage and communication capabilities of mobile devices makes it possible to start processing and storing data locally, rather than offloading it to remote servers; allowing scenarios of mobile clouds without infrastructure dependency. We can now aim at connecting neighboring mobile devices, creating a local mobile cloud that provides storage and computing services on local generated data. In this paper, we describe an early overview of a distributed mobile system that allows accessing and processing of data distributed across mobile devices without an external communication infrastructure. Copyright © 2015 ICST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems of hyperspectral data analysis is the presence of mixed pixels due to the low spatial resolution of such images. Linear spectral unmixing aims at inferring pure spectral signatures and their fractions at each pixel of the scene. The huge data volumes acquired by hyperspectral sensors put stringent requirements on processing and unmixing methods. This letter proposes an efficient implementation of the method called simplex identification via split augmented Lagrangian (SISAL) which exploits the graphics processing unit (GPU) architecture at low level using Compute Unified Device Architecture. SISAL aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The proposed implementation is performed in a pixel-by-pixel fashion using coalesced accesses to memory and exploiting shared memory to store temporary data. Furthermore, the kernels have been optimized to minimize the threads divergence, therefore achieving high GPU occupancy. The experimental results obtained for the simulated and real hyperspectral data sets reveal speedups up to 49 times, which demonstrates that the GPU implementation can significantly accelerate the method's execution over big data sets while maintaining the methods accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many Hyperspectral imagery applications require a response in real time or near-real time. To meet this requirement this paper proposes a parallel unmixing method developed for graphics processing units (GPU). This method is based on the vertex component analysis (VCA), which is a geometrical based method highly parallelizable. VCA is a very fast and accurate method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Experimental results obtained for simulated and real hyperspectral datasets reveal considerable acceleration factors, up to 24 times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new parallel method for sparse spectral unmixing of remotely sensed hyperspectral data on commodity graphics processing units (GPUs) is presented. A semi-supervised approach is adopted, which relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. This method is based on the spectral unmixing by splitting and augmented Lagrangian (SUNSAL) that estimates the material's abundance fractions. The parallel method is performed in a pixel-by-pixel fashion and its implementation properly exploits the GPU architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for simulated and real hyperspectral datasets reveal significant speedup factors, up to 1 64 times, with regards to optimized serial implementation.