532 resultados para PLGA microspheres
Resumo:
Flow cytometry, in combination with advances in bead coding technologies, is maturing as a powerful high-throughput approach for analyzing molecular interactions. Applications of this technology include antibody assays and single nucleotide polymorphism mapping. This review describes the recent development of a microbead flow cytometric approach to analyze RNA-protein interactions and discusses emerging bead coding strategies that together will allow genome-wide identification of RNA-protein complexes. The microbead flow cytometric approach is flexible and provides new opportunities for functional genomic studies and small-molecule screening.
Resumo:
Polyethylcyanoacrylate (PECA) nanoparticles were prepared by interfacial polymerization of a water-in-oil microemulsion. Nanoparticles were isolated from the polymerization template by sequential ethanol washing and centrifugation. A nanocapsule preparation yielding the original particle size and distribution following redispersion in an aqueous solution was achieved by freeze-drying the isolated nanoparticles in a solution of 5% w/v sugar. The cytotoxicity and uptake of nanocapsules by dendritic cells was investigated using a murine-derived cell line (D1). PECA nanoparticles were found to adversely effect cell viability at concentrations greater than 10 mug/ml of polymer in the culture medium. In comparison to antigen in solution, cell uptake of antigen encapsulated within nanoparticles was significantly higher at both 4 and 37 degreesC. Following a 24 h incubation period, the percentage of cells taking-up antigen was also increased when antigen was encapsulated in nanoparticles as compared to antigen in solution. The uptake of nanoparticles and the effect of antigen formulation on morphological cell changes indicative of cell maturation were also investigated by scanning electron microscopy (SEM). SEM clearly demonstrated the adherence of nanoparticles to the cell surface. Incubation of D1 dendritic cells with nanoparticles containing antigen also resulted in morphological changes indicative of cell maturation similar to that observed when the cells were incubated with lipopolysaccharide. In contrast, cells incubated with antigen solution did not demonstrate such morphological changes and appeared similar to immature cells that had not been exposed to antigen.
Resumo:
Carbonates of rare-earths, specifically hydroxide carbonate or oxide carbonate hydrate, could be prepared on common glass by a hydrothermal process involving thiourea. Examples presented in this paper include LaOHCO3, CeOHCO3 and EU2O(CO3)(2) . H2O structures formed on glass from solutions of thiourea and the relevant rare-earth reactants. The crystal structure and habit on the substrates were dependent on the preparative conditions; the influence of the concentrations of reactants and temperature on the crystal morphologies is illustrated. Second harmonic generation was found to occur in the crystals. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The in vitro and in vivo degradation properties of poly(lactic-co-glycolic acid) (PLGA) scaffolds produced by two different technologies-therm ally induced phase separation (TIPS), and solvent casting and particulate leaching (SCPL) were compared. Over 6 weeks, in vitro degradation produced changes in SCPL scaffold dimension, mass, internal architecture and mechanical properties. TIPS scaffolds produced far less changes in these parameters providing significant advantages over SCPL. In vivo results were based on a microsurgically created arteriovenous (AV) loop sandwiched between two TIPS scaffolds placed in a polycarbonate chamber under rat groin skin. Histologically, a predominant foreign body giant cell response and reduced vascularity was evident in tissue ingrowth between 2 and 8 weeks in TIPS scaffolds. Tissue death occurred at 8 weeks in the smallest pores. Morphometric comparison of TIPS and SCPL scaffolds indicated slightly better tissue ingrowth but greater loss of scaffold structure in SCPL scaffolds. Although advantageous in vitro, large surface area:volume ratios and varying pore sizes in PLGA TIPS scaffolds mean that effective in vivo (AV loop) utilization will only be achieved if the foreign body response can be significantly reduced so as to allow successful vascularisation, and hence sustained tissue growth, in pores less than 300 mu m. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this study, we investigate the fabrication of 3D porous poly(lactic-co-glycolic acid) (PLGA) scaffolds using the thermally-induced phase separation technique. The current study focuses on the selection of alternative solvents for this process using a number of criteria, including predicted solubility. toxicity, removability and processability. Solvents were removed via either vacuum freeze-drying or leaching, depending on their physical properties. The residual solvent was tested using gas chromatography-mass spectrometry. A large range of porous, highly interconnected scaffold architectures with tunable pore size and alignment was obtained, including combined macro- and microporous structures and an entirely novel 'porous-fibre' structure. The morphological features of the most promising poly(lactic-co-glycolic acid) scaffolds were analysed via scanning electron microscopy and X-ray micro-computed tomography in both two and three dimensions. The Young's moduli of the scaffolds under conditions of temperature, pH and ionic strength similar to those found in the body were tested and were found to be highly dependent on the architectures.
Resumo:
Adipose tissue forms when basement membrane extract ( Matrigel (TM)) and fibroblast growth factor-2 (FGF-2) are added to our mouse tissue engineering chamber model. A mouse tumor extract, Matrigel is unsuitable for human clinical application, and finding an alternative to Matrigel is essential. In this study we generated adipose tissue in the chamber model without using Matrigel by controlled release of FGF-2 in a type I collagen matrix. FGF-2 was impregnated into biodegradable gelatin microspheres for its slow release. The chambers were filled with these microspheres suspended in 60 mu L collagen gel. Injection of collagen containing free FGF-2 or collagen containing gelatin microspheres with buffer alone served as controls. When chambers were harvested 6 weeks after implantation, the volume and weight of the tissue obtained were higher in the group that received collagen and FGF-2 impregnated microspheres than in controls. Histologic analysis of tissue constructs showed the formation of de novo adipose tissue accompanied by angiogenesis. In contrast, control groups did not show extensive adipose tissue formation. In conclusion, this study has shown that de novo formation of adipose tissue can be achieved through controlled release of FGF-2 in collagen type I in the absence of Matrigel.
Resumo:
Although poly(alpha-hydroxy esters), especially the PLGA family of lactic acid/glycolic acid copolymers, have many properties which make them promising materials for tissue engineering, the inherent chemistry of surfaces made from these particular polymers is problematic. In vivo, they promote a strong foreign-body response as a result of nonspecific adsorption and denaturation of serum proteins, which generally results in the formation of a nonfunctional fibrous capsule. Surface modification post-production of the scaffolds is an often-utilized approach to solving this problem, conceptually allowing the formation of a scaffold with mechanical properties defined by the bulk material and molecular-level interactions defined by the modified surface properties. A promising concept is the so-called blank slate: essentially a surface that is rendered resistant to nonspecific protein adsorption but can be readily activated to covalently bind bio-functional molecules such as extracellular matrix proteins, growth factors or polysaccharides. This study focuses on the use of the quartz crystal microbalance (QCM) to follow the layer-by-layer (LbL) electrostatic deposition of high molecular weight hyaluronic acid and chitosan onto PLGA surfaces rendered positively charged by aminolysis, to form a robust, protein-resistant coating. We further show that this surface may be further functionalized via the covalent attachment of collagen IV, which may then be used as a template for the self-assembly of basement membrane components from dilute Matrigel. The response of NIH-3T3 fibroblasts to these surfaces was also followed and shown to closely parallel the results observed in the QCM.
Resumo:
AIMS To demonstrate the potential use of in vitro poly(lactic-co-glycolic acid) (PLGA) microparticles in comparison with triamcinolone suspension to aid visualisation of vitreous during anterior and posterior vitrectomy. METHODS PLGA microparticles (diameter 10-60 microm) were fabricated using single and/or double emulsion technique(s) and used untreated or following the surface adsorption of a protein (transglutaminase). Particle size, shape, morphology and surface topography were assessed using scanning electron microscopy (SEM) and compared with a standard triamcinolone suspension. The efficacy of these microparticles to enhance visualisation of vitreous against the triamcinolone suspension was assessed using an in vitro set-up exploiting porcine vitreous. RESULTS Unmodified PLGA microparticles failed to adequately adhere to porcine vitreous and were readily washed out by irrigation. In contrast, modified transglutaminase-coated PLGA microparticles demonstrated a significant improvement in adhesiveness and were comparable to a triamcinolone suspension in their ability to enhance the visualisation of vitreous. This adhesive behaviour also demonstrated selectivity by not binding to the corneal endothelium. CONCLUSION The use of transglutaminase-modified biodegradable PLGA microparticles represents a novel method of visualising vitreous and aiding vitrectomy. This method may provide a distinct alternative for the visualisation of vitreous whilst eliminating the pharmacological effects of triamcinolone acetonide suspension.
Resumo:
Particulate delivery systems such as liposomes and polymeric nano- and microparticles are attracting great interest for developing new vaccines. Materials and formulation properties essential for this purpose have been extensively studied, but relatively little is known about the influence of the administration route of such delivery systems on the type and strength of immune response elicited. Thus, the present study aimed at elucidating the influence on the immune response when of immunising mice by different routes, such as the subcutaneous, intradermal, intramuscular, and intralymphatic routes with ovalbumin-loaded liposomes, N-trimethyl chitosan (TMC) nanoparticles, and poly(lactide-co-glycolide) (PLGA) microparticles, all with and without specifically selected immune-response modifiers. The results showed that the route of administration caused only minor differences in inducing an antibody response of the IgG1 subclass, and any such differences were abolished upon booster immunisation with the various adjuvanted and non-adjuvanted delivery systems. In contrast, the administration route strongly affected both the kinetics and magnitude of the IgG2a response. A single intralymphatic administration of all evaluated delivery systems induced a robust IgG2a response, whereas subcutaneous administration failed to elicit a substantial IgG2a response even after boosting, except with the adjuvanted nanoparticles. The intradermal and intramuscular routes generated intermediate IgG2a titers. The benefit of the intralymphatic administration route for eliciting a Th1-type response was confirmed in terms of IFN-gamma production of isolated and re-stimulated splenocytes from animals previously immunised with adjuvanted and non-adjuvanted liposomes as well as with adjuvanted microparticles. Altogether the results show that the IgG2a associated with Th1-type immune responses are sensitive to the route of administration, whereas IgG1 response associated with Th2-type immune responses were relatively insensitive to the administration route of the particulate delivery systems. The route of administration should therefore be considered when planning and interpreting pre-clinical research or development on vaccine delivery systems.
Resumo:
Microencapsulation processes, based upon the concept of solvent evaporation, have been employed within these studies to prepare microparticles from poly--hydroxybutyrate homopolymers and copolymers thereof with 3-hydroxyvalerate [P(HB-HV) polymers]. Variations in the preparative technique have facilitated the manufacture of two structurally distinct forms of microparticle. Thus, monolithic microspheres and reservoir-type microcapsules have been respectively fabricated by single and double emulsion-solvent evaporation processes. The objective of the studies reported in chapter three is to asses how a range of preparative variables affect the yield, shape and surface morphology of P(HB-HV) microcapsules. The following chapter then describes how microcapsule morphology in general, and microcapsule porosity in particular, can be regulated by blending the fabricating P(HB-HV) polymer with poly--caprolactone [PCL]. One revelation of these studies is the ability to generate uniformly microporous microcapsules from blends of various high molecular weight P(HB-HV) polymers with a low molecular weight form of PCL. These microcapsules are of particular interest because they may have the potential to facilitate the release of an encapsulated macromolecule via an aqueous diffusion mechanism which is not reliant on polymer degradation. In order to investigate this possibility, one such formulation is used in chapter five to encapsulate a wide range of different macromolecules, whose in vitro release behaviour is subsequently evaluated. The studies reported in chapter six centre on the preparation and characterization of hydrocortisone-loaded microspheres, prepared from a range of P(HB-HV) polymers, using a single emulsion-solvent evaporation process. In this chapter, the influence of the organic phase viscosity on the efficiency of drug encapsulation is the focus of initial investigations. Thereafter, it is shown how the strategies previously adopted for the regulation of microcapsule morphology can also be applied to single emulsion systems, with profound implications for the rate of drug release.
Resumo:
The advent of DNA vaccines has heralded a new technology allowing the design and elicitation of immune responses more adequate for a wider range of pathogens. The formulation of these vaccines into the desired dosage forms extends their capability in terms of stability, routes of administration and efficacy. This thesis describes an investigation into the fabrication of plasmid DNA, the active principle of DNA vaccines, into microspheres, based on the tenet of an increased cellular uptake of microparticulate matter by phagocytic cells. The formulation of plasmid DNA into microspheres using two methods, is presented. Formulation of microspheric plasmid DNA using the double emulsion solvent evaporation method and a spray-drying method was explored. The former approach involves formation of a double emulsion, by homogenisation. This method produced microspheres of uniform size and smooth morphology, but had a detrimental effect on the formulated DNA. The spray-drying method resulted in microspheres with an improved preservation of DNA stability. The use of polyethylenimine (PEI) and stearylamine (SA) as agents in the microspheric formulation of plasmid DNA is a novel approach to DNA vaccine design. Using these molecules as model positively-charged agents, their influence on the characteristics of the microspheric formulations was investigated. PEI improved the entrapment efficiency of the plasmid DNA in microspheres, and has minimal effect on either the surface charge, morphology or size distribution of the formulations. Stearylamine effected an increase in the entrapment efficiency and stability of the plasmid DNA and its effect on the micropshere morphology was dependent on the method of preparation. The differences in the effects of the two molecules on microsphere formulations may be attributable to their dissimilar physico-chemical properties. PEI is water-soluble and highly-branched, while SA is hydrophobic and amphipathic. The positive charge of both molecules is imparted by amine functional groups. Preliminary data on the in vivo application of formulated DNA vaccine, using hepatitis B plasmid, showed superior humoral responses to the formulated antigen, compared with free (unformulated) antigen.
Resumo:
The surface nature of Acanthamoeba trophozoites and cysts was investigated with respect to cell surface charge, hydrophobicity and surface carbohydrate composition. Particulate microelectrophoresis revealed a marked negative charge for both morphological forms, though less for cyst surfaces. Hydrophobicity was determined by adhesion to n-hexadecane and indicated a relatively low hydrophobic nature of both forms, though less so for cysts. Surface carbohydrate composition was studied by the use of fluorescent lectins and flow cytometry, using a ligand-receptor approach for further in depth analysis of binding of particular lectins. These studies showed trophozoite and cyst surfaces to be rich in N-acetylglucosamine, N-acteylneuraminic acid, mannose and glucose, with the addition of N-acetylgalactosamine on cysts. The importance of such surface properties was investigated with respect to phagocytosis of polystyrene latex microspheres, of different surface types and size. Investigations into the optimum conditions of uptake of beads indicated a preference for a medium devoid of nutrients, such as saline, though temperature was not a factor. An amoebal predilection for beads of lower charge and greater hydrophobicity was demonstrated. Furthermore, a preference for the largest bead size used (2.0 m) was observed. The influence of either Con A or mannose or glucose on bead association was apparently limited. The fate of foreign DNA ingested by Acanthamoeba appeared to indicate that such DNA was destroyed, as it could not be detected following extraction procedures and PCR amplification.
Resumo:
Polyanhydrides are useful biodegradable vehicles for controlled drug delivery. In aqueous media the breaking of the anhydride bonds resulting in gradually polymer fragments collapse and release drugs in a controlled manner. In this study, two new biodegradable polyanhydrides copolymers were synthesised using a melt-polycondensation method. The first is poly (bis (p-carboxyphenoxy)-2-butene-co-sebacic acid) (CP2B: SA), which has double bonds along the polymer backbone. The second is crosslinked poly (glutamic acid-sebacic acid-co-sebacic acid) (GluSA: SA), where the conjugated unit of glutamic acid with sebacic acid (glutamic acid-SA) acted as a crosslinking fragment in producing the crosslinking polymer. The two polymers were applied to preparation of microspheres with bovine serum albumin (BSA) as a model protein, using both double emulsion solvent evaporation and spray drying methods. The characterisation of the microspheres, morphology, particle size, and drug loading, was studied. The in vitro hydrolytic degradation of polymers and blank microspheres was monitored using IR, GPC, and DSC. In vitro drug release behaviour was also studied. Though the studies showed cleavages of anhydride bonds occurred rapidly (<5 days), bulks of the polymer microspheres could be observed after a few weeks to a month; and only around 10-35% of the protein was detectable in a four-week period in vitro. We found the pH of the medium exerts a large impact on the release of the protein from the microspheres. The higher the pH, the faster the release. Therefore the release of the protein from the polyanhydride microspheres was pH-sensitive due mainly to the dissolution of monomers from the microspheres.
Resumo:
Cell surface properties of the basidiomycete yeast Cryptococcus neoformans were investigated with a combination of novel and well proven approaches. Non-specific cell adhesion forces, as well as exposed carbohydrate and protein moieties potentially associated with specific cellular interaction, were analysed. Experimentation and analysis employed cryptococcal cells of different strains, capsular status and culture age. Investigation of cellular charge by particulate microelectrophoresis revealed encapsulated yeast forms of C. neoformans manifest a distinctive negative charge regardless of the age of cells involved; in turn, the neutral charge of acapsulate yeasts confirmed that the polysaccharide capsule, and not the cell wall, was responsible for this occurrence. Hydrophobicity was measured by MATH and HICH techniques, as well as by the attachment of polystyrene microspheres. All three techniques, where applicable, found C. neoformans yeast to be consistently hydrophilic; this state varied little regardless of strain and culture age. Cell surface carbohydrates and protein were investigated with novel fluorescent tagging protocols, flow cytometry and confocal microscopy. Cell surface carbohydrate was identified by controlled oxidation in association with biotin hydrazide and fluorescein-streptavidin tagging. Marked amounts of carbohydrate were measured and observed on the cell wall surface of cryptococcal yeasts. Furthermore, tagging of carbohydrates with selective fluorescent lectins supported the identification, measurement and observation of substantial amounts of mannose, glucose and N-acetyl-glucosamine. Cryptococcal cell surface protein was identified using sulfo-NHS-biotin with fluorescein-streptavidin, and then readily quantified by flow cytometry. Confocal imaging of surface exposed carbohydrate and protein revealed common localised areas of vivid fluorescence associated with buds, bud scars and nascent daughter cells. Carbohydrate and protein fluorescence often varied between strains, culture age and capsule status of cells examined. Finally, extension of protein tagging techniques resulted in the isolation and extraction of two biotinylated proteins from the yeast cell wall surface of an acapsulate strain of C.neoformans.
Resumo:
In recent years, much interest has focused on the beneficial effects of administering potentially harmful therapeutic agents in drug carriers so as to reduce their toxic side effects. Rheumatoid arthritis is a chronic systemic disease with progressive destruction of the Joints and long term patient disability, Corticosteroids have been shown to retard the progression of Joint destruction but are limited in their use due to adverse side effects,This project, following the line of investigation started by other workers, was designed to study the use of microspheres to deliver corticosteroids to inflamed tissues by both the oral and intravenous routes. Hydrocortisone (HC)-loaded albumin microspheres were prepared by three different methods, by direct incorporation of HC within the particles, by indirect incorporation of HC by the enzymatic conversion of hydrocortisone-21-phosphate (H-21-P) to HC within the particles, and by the adsorption of HC onto the surface. HC was also loaded with PLA microspheres. The level of corticosteriod loading and in vitro release from microspheres was determined by HPLC analysis. A reversed-phase, ion-pairing HPLC method was developed to simultaneously measure both HC and H-21-P. The highest level of corticosteroid loading was achieved using the incorporation of H-21-P with enzymatic conversion to HC method. However, HPLC analysis showed only 5% of the incorporated steroid was HC. In vitro release rates of steroid from albumin microspheres showed >95% of incorporated steroid was released within 2 hours of dissolution. Increasing the protein:steroid ratio, and the temperature and duration of microsphere stabilization, had little effect on prolonging drug release. In vivo studies, using the carrageenan-induced rat hind-paw model of inflammation, indicated steroid-incorporated microspheres administered both orally and intraperitoneally were not therapeutically advantageous when compared to equivalent free steroid doses. The ability of orally and intravenously dosed [125I]~albumin microspheres (2.67 μm mean diameter) to accumulate in acutely and chronically inflamed tissues was investigated, The subcutaneous air-pouch was the model of inflammation used, with carrageenan as the inflammatory stimulus. Acute and chronic inflammation was shown to be consistently formed in pouch tissues in terms of cell infiltration and fluid exudate formation in the pouch cavity. Albumin microspheres were shown to accumulate in the inflamed tissues and pouch fluids after both oral and intravenous administration. Preliminary, confirmatory studies using latex microspheres and quantitation by GPC analysis, also indicated microsphere accumulation in both acutely and chronically inflamed air-pouch tissues. tntl lUr"'poucbtis,sues; The results indicate the uptake and transfer of microspheres across the gastrointestinal tract into the circulation and their migration through disrupted endothelium and basement membranes at the inflamed sites. , .