937 resultados para PLATFORM SWITCHING
Resumo:
The Trench Insulated Gate Bipolar Transistor (IGBT) is the most promising structure for the next generation of power semiconductor devices with wide applications ranging from motor control (1-4 kV) to HVDC (6.5 kV). Here we present for the first time an optimum design of a 1.4kV Trench IGBT using a new, fully integrated optimisation system comprising process and device simulators and the RSM optimiser. The use of this new TCAD system has contributed largely to realizing devices with characteristics far superior to the previous DMOS generation of IGBTs. Full experimental results on 1.4kV Trench IGBTs which are in excellent agreement with the TCAD predictions are reported.
Resumo:
In this paper authors report the first demonstration of a diode laser powered Kerr effect device, consisting of a single birefringent fiber, able to phase-shift and switch an optical signal generated by a second laser diode. They have obtained fast, stable phase-shifting of 90° in a single fiber, at a coupled pump power of only 20 mW. Using this phase shift to induce polarization switching with resultant gating, 25% modulation of the diode laser signal has been observed, with a detection limited-rise time of 10ns.
Resumo:
We experimentally demonstrate femtosecond switching of a fully packaged hybrid-integrated Mach-Zehnder switch. A record switching window of 620fs at fult-width-half-maximum is achieved. © 2004 Optical Society of America.
Resumo:
We present a novel optical routing scheme scalable to greater than 50×50 channels with a potential aggregate bit-rate of 1Tbps. The proof-of-principle experiment demonstrates the feasibility of the router with a de-multiplexed Q-factor of 6.35. © 2004 Optical Society of America.
Resumo:
The development of a high performance hybrid integration platform is demonstrated using an all optical wavelength converter based on an integrated SOA MZI. The device structure, transfer functions, power penalties and regenerative properties are presented. © 2004 Optical Society of America.
Resumo:
Here we demonstrate that a free-standing carbon nanotube (CNT) array can be used as a large surface area and high porosity 3D platform for molecular imprinted polymer (MIP), especially for surface imprinting. The thickness of polymer grafted around each CNT can be fine-tuned to imprint different sizes of target molecules, and yet it can be thin enough to expose every imprint site to the target molecules in solution without sacrificing the capacity of binding sites. The performance of this new CNT-MIP architecture was first assessed with a caffeine-imprinted polypyrrole (PPy) coating on two types of CNT arrays: sparse and dense CNTs. Real-time pulsed amperometric detection was used to study the rebinding of the caffeine molecules onto these CNT-MIPPy sensors. The dense CNT-MIPPy sensor presented the highest sensitivity, about 15 times better when compared to the conventional thin film, whereas an improvement of 3.6 times was recorded on the sparse CNT. However, due to the small tube-to-tube spacing in the dense CNT array, electrode fouling was observed during the detection of concentrated caffeine in phosphate buffer solution. A new I-V characterization method using pulsed amperometry was introduced to investigate the electrical characterization of these new devices. The resistance value derived from the I-V plot provides insight into the electrical conductivity of the CNT transducer and also the effective surface area for caffeine imprinting.
Resumo:
We demonstrated the nonvolatile memory functionality of ZnO nanowire field effect transistors (FETs) using mobile protons that are generated by high-pressure hydrogen annealing (HPHA) at relatively low temperature (400 °C). These ZnO nanowire devices exhibited reproducible hysteresis, reversible switching, and nonvolatile memory behaviors in comparison with those of the conventional FET devices. We show that the memory characteristics are attributed to the movement of protons between the Si/SiO(2) interface and the SiO(2)/ZnO nanowire interface by the applied gate electric field. The memory mechanism is explained in terms of the tuning of interface properties, such as effective electric field, surface charge density, and surface barrier potential due to the movement of protons in the SiO(2) layer, consistent with the UV photoresponse characteristics of nanowire memory devices. Our study will further provide a useful route of creating memory functionality and incorporating proton-based storage elements onto a modified CMOS platform for FET memory devices using nanomaterials.