864 resultados para PLANET-FORMING ZONES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on clinicopathological findings in two cases of rosette-forming glioneuronal tumor of the fourth ventricle (RGNT) occurring in females aged 16 years (Case 1) and 30 years (Case 2). Symptoms included vertigo, nausea, cerebellar ataxia, as well as headaches, and had been present for 4-months and 1 week, respectively. Magnetic resonance imaging (MRI) indicated a cerebellar-based tumor of 1.8cm (Case 1) and 5cm (Case 2) diameter each, bulging into the fourth ventricle. Case 2 involved a cyst-mural-nodule configuration. In both instances, the solid component appeared isointense on T(1) sequences, hyperintense in the T(2) mode, and enhanced moderately. Gross total resection was achieved via suboccipital craniotomy. However, functional recovery was disappointing in Case 1. On microscopy, both tumors comprised an admixture of low-grade astrocytoma interspersed with circular aggregates of synaptophysin-expressing round cells harboring oligodendrocyte-like nuclei. The astrocytic moiety in Case 1 was nondescript, and overtly pilocytic in Case 2. The architecture of neuronal elements variously consisted of neurocytic rosettes, of pseudorosettes centered on a capillary core, as well as of concentric ribbons along irregular lumina. Gangliocytic maturation, especially "floating neurons", or a corresponding immunoreactivity for neurofilament protein was absent. Neither of these populations exhibited atypia, mitotic activity, or a significant labeling for MIB-1. Cerebellar parenchyma included in the surgical specimen did not reveal any preexisting malformative anomaly. Despite sharing some overlapping histologic traits with dysembryoplastic neuroepithelial tumor (DNT), the presentation of RGNT with respect to both patient age and location is consistent enough for this lesion to be singled out as an autonomous entity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions between follicular epithelial cells and extracellular matrix (ECM) are supposed to play an important role in the development and maintenance of thyroid tissue architecture. In the present study we have therefore investigated the synthesis of ECM components by a feline thyroid cell line which is able to form follicle-like structures in vitro, and also in v-ras-transfected and control-transfected sublines. Transfections were performed by lipofection with pZSR (viral Harvey ras gene; neo) and pSV2-neo (control, neo only) plasmids. We have adapted a semisolid culture system composed exclusively of polymerized alginate and therefore devoid of ECM components. Feline cells embedded in alginate gels as single cells and cultured for up to 90 days formed cell clusters within 10 days. Follicle-like structures were formed in the original cell lines and also in the v-ras- and control-transfected cells. Differences in proliferation rates were observed, the v-ras-transfected cells growing up to two to three times faster than the non-transfected cells. Immunostaining was done using rabbit first antibodies directed against mouse collagen IV, human fibronectin, laminin (tumor Engelbreth-Holm-Swarm laminin), perlecan and other ECM components. For comparison, immunostaining was also performed on cryosections of nodular goiters of six hyperthyroid cats. The cell lines and their transfected clones stained strongly positive for collagen IV and fibronectin, and positively but less strongly for laminin and perlecan. The cat goiter tissue stained positively for collagen IV, laminin, perlecan, and fibronectin, and positive staining for S-laminin (containing the beta2-chain) was seen in blood vessel walls in this tissue. In conclusion, cat cell lines grow three-dimensionally in alginate beads over several weeks, they form follicle-like structures and express the same ECM components as the native cat goiter tissue. Transfection with v-ras does increase proliferation rate, but does not fundamentally alter formation of follicle-like structures and ECM expression. Alginate gel culture is a promising new tool for the study of follicular morphogenesis, polarity, the expression pattern of ECM components and of the interaction between thyrocytes and ECM. It avoids interference caused by gels composed of ECM components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Riparian zones are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well defined vegetation and soil characteristics. Development of an all-encompassing definition for riparian ecotones, because of their high variability, is challenging. However, there are two primary factors that all riparian ecotones are dependent on: the watercourse and its associated floodplain. Previous approaches to riparian boundary delineation have utilized fixed width buffers, but this methodology has proven to be inadequate as it only takes the watercourse into consideration and ignores critical geomorphology, associated vegetation and soil characteristics. Our approach offers advantages over other previously used methods by utilizing: the geospatial modeling capabilities of ArcMap GIS; a better sampling technique along the water course that can distinguish the 50-year flood plain, which is the optimal hydrologic descriptor of riparian ecotones; the Soil Survey Database (SSURGO) and National Wetland Inventory (NWI) databases to distinguish contiguous areas beyond the 50-year plain; and land use/cover characteristics associated with the delineated riparian zones. The model utilizes spatial data readily available from Federal and State agencies and geospatial clearinghouses. An accuracy assessment was performed to assess the impact of varying the 50-year flood height, changing the DEM spatial resolution (1, 3, 5 and 10m), and positional inaccuracies with the National Hydrography Dataset (NHD) streams layer on the boundary placement of the delineated variable width riparian ecotones area. The result of this study is a robust and automated GIS based model attached to ESRI ArcMap software to delineate and classify variable-width riparian ecotones.