876 resultados para PHOTO-CROSS-LINKING
Resumo:
The basophil activation test (BAT) has become a pervasive test for allergic response through the development of flow cytometry, discovery of activation markers such as CD63 and unique markers identifying basophil granulocytes. Basophil activation test measures basophil response to allergen cross-linking IgE on between 150 and 2000 basophil granulocytes in <0.1 ml fresh blood. Dichotomous activation is assessed as the fraction of reacting basophils. In addition to clinical history, skin prick test, and specific IgE determination, BAT can be a part of the diagnostic evaluation of patients with food-, insect venom-, and drug allergy and chronic urticaria. It may be helpful in determining the clinically relevant allergen. Basophil sensitivity may be used to monitor patients on allergen immunotherapy, anti-IgE treatment or in the natural resolution of allergy. Basophil activation test may use fewer resources and be more reproducible than challenge testing. As it is less stressful for the patient and avoids severe allergic reactions, BAT ought to precede challenge testing. An important next step is to standardize BAT and make it available in diagnostic laboratories. The nature of basophil activation as an ex vivo challenge makes it a multifaceted and promising tool for the allergist. In this EAACI task force position paper, we provide an overview of the practical and technical details as well as the clinical utility of BAT in diagnosis and management of allergic diseases.
Resumo:
The DNA repair gene, XPF, is implicated in numerous processes relating to maintenance of genomic stability. The experiments presented herein were designed to investigate the role of XPF in homologous recombination processes. Specifically, the role of XPF in plasmid-chromosome and intrachromosomal recombination was evaluated. To interrogate the mechanistic role of XPF in plasmid-chromosome recombination, a homologous gene targeting system at the APRT locus in Chinese Hamster Ovary (CHO) cells was used. The targeting vector is linearized within 900 base pairs of heterology, which generates a substrate with long, nonhomologous 3′-OH ends that must be efficiently processed, presumably by the Xpf/Ercc1 heterodimer, prior to a productive recombination event. These experiments demonstrated a significant decrease in the targeted gene recombination frequency and a significant change to the recombinant product distributions in XPF- and ERCC1-deficient CHO cell lines, which suggest that the Xpf/Ercc1 heterodimer is essential for strand invasion recombination involving the processing of long, nonhomologous tails. In order to evaluate the role of XPF in intrachromosomal recombination, direct APRT repeat constructs at the chromosomal APRT locus in XPF-proficient and XPF-deficient CHO cells were used in spontaneous and DSB-induced recombination experiments. A defect in intrachromosomal recombination was only shown for UV41-derived XPF -deficient CHO cells, which have a severe interstrand crosslinking phenotype. The results of these studies demonstrate a requirement for XPF function in both plasmid-chromosome and intrachromosomal recombination, specifically in removal of long, single-stranded 3′-OH DNA ends. In addition, these studies identified a correlation between the interstrand cross-linking phenotype and the intrachromosomal recombination phenotype of each CHO cell line, but did not demonstrate a correlation between the interstrand cross-linking phenotype and the plasmid-chromosome recombination phenotype of these CHO cell lines. ^
Resumo:
Membrane proteins are critical to every aspect of cell physiology, with their association mediating important biological functions. The transmembrane and cytoplasmic domains are known to be important for their association. In order to characterize their role in detail, we have applied different biophysical techniques in detergent micelles to two model systems. The first study involves FcRγ, a single transmembrane domain protein existing as a disulfide linked homodimer. We investigated the role of a conserved transmembrane polar residue and the cytoplasmic tail in FcRγ homo-interactions. Our results by various biophysical techniques including SDS-PAGE, circular dichroism and sedimentation equilibrium in detergent micelles indicate importance of both the transmembrane polar residue and cytoplasmic tail in maintaining proper conformation for FcRγ homo-interactions. A contrasting second study was on L-selectin, another single transmembrane domain protein with a large extracellular domain and a short cytoplasmic tail. Previous cross-linking experiments indicate its possible dimerization. However, the purified fragment of L-selectin and corresponding mutants did not dimerize when analyzed by TOXCAT assay, sedimentation equilibrium and fluorescence resonance energy transfer. It was likely that the presence of juxtamembrane positively charged residues led to decreased migrational rates in SDS PAGE. In conclusion, complementary biophysical techniques should be used with care when studying membrane protein association in detergent micelles. As an extension to our study on L-selectin, we also investigated its interaction with Calmodulin (CaM) in detergent micelles. CaM was found to interact with different detergents. We applied fluorescence and NMR spectroscopy to characterize the interaction of both the apo and Ca 2+ bound form of CaM, with commonly used detergents, below and above their respective critical micelle concentrations. The interaction of apo-CaM with detergents was found to vary with the nature of the detergent head group, whereas Ca2+-CaM interacted with individual detergent molecules irrespective of the nature of their head group. NMR titration experiments of CaM with detergents indicated involvement of specific residues from the N-lobe, linker and C-lobe of CaM. ^
Resumo:
Systemic toxicity was evaluated in Sprague-Dawley (SD) rats and A-strain mice exposed to HCHO inhalation at 0, 0.5, 3, or 15 ppm for six hours/day, five days/week for up to 24 weeks. Toxicity was measured by flow cytometry to detect changes in cell cycle RNA and DNA content and by alkaline elution to detect DNA protein cross-link (DPC) formation.^ A G(,2)M block was detected in SD rat marrow following one week of exposure to 0.5, 3, or 15 ppm HCHO, but this block did not persist. No effect was noticed in mouse marrow. Only a minimal increase in RNA content was detected in rat or mouse marrow while exfoliated lung cells showed a significant increase in RNA activity after one week of exposure.^ Acute exposure in SD rats for four hours/day for one or three days at 150 ppm showed an increase in RNA activity in exfoliated lung cells but not in the marrow after one day. On the third day, dead cells were detected in exfoliated lung cells.^ In alkaline elution studies, no DPC were detected in marrow of SD rats after 24 weeks exposure up to 15 ppm. During acute exposures, a dose response relationship was detected in SD rat exfoliated lung cells which yielded cross-linking factors of 0.954, 1.237, and 1.417 following a four hour exposure to 15, 50, or 150 ppm, respectively. No DPC were detected in the marrow at 150 ppm. In vitro exposures to HCHO of CHO and SHE cells and rat marrow cells revealed the production of DPC and DNA-DNA cross-links.^ Cytoxan treatment of SD rats was used to provide positive controls for flow cytometry and alkaline elution. A drastic reduction in RNA content and cycling cells occurred one day following treatment. After four days, RNA content was greatly increased; and on day eleven the marrow had regenerated. DPCs were detected in both the marrow and the exfoliated lung cells.^ The lack of significant responses in SD rats and A-strain mice below 15 ppm HCHO is explainable by host defense mechanisms. Apparently, the mucociliary apparatus and enzymatic detoxification are sufficient to reduce systemic toxicity to low level concentrations of formaldehyde. ^
Resumo:
Coordinated expression of virulence genes in Bacillus anthracis occurs via a multi-faceted signal transduction pathway that is dependent upon the AtxA protein. Intricate control of atxA gene transcription and AtxA protein function have become apparent from studies of AtxA-induced synthesis of the anthrax toxin proteins and the poly-D-glutamic acid capsule, two factors with important roles in B. anthracis pathogenesis. The amino-terminal region of the AtxA protein contains winged-helix (WH) and helix-turn-helix (HTH) motifs, structural features associated with DNA-binding. Using filter binding assays, I determined that AtxA interacted non-specifically at a low nanomolar affinity with a target promoter (Plef) and AtxA-independent promoters. AtxA also contains motifs associated with phosphoenolpyruvate: sugar phosphotransferase system (PTS) regulation. These PTS-regulated domains, PRD1 and PRD2, are within the central amino acid sequence. Specific histidines in the PRDs serve as sites of phosphorylation (H199 and H379). Phosphorylation of H199 increases AtxA activity; whereas, H379 phosphorylation decreases AtxA function. For my dissertation, I hypothesized that AtxA binds target promoters to activate transcription and that DNA-binding activity is regulated via structural changes within the PRDs and a carboxy-terminal EIIB-like motif that are induced by phosphorylation and ligand binding. I determined that AtxA has one large protease-inaccessible domain containing the PRDs and the carboxy-terminal end of the protein. These results suggest that AtxA has a domain that is distinct from the putative DNA-binding region of the protein. My data indicate that AtxA activity is associated with AtxA multimerization. Oligomeric AtxA was detected when co-affinity purification, non-denaturing gel electrophoresis, and bis(maleimido)hexane (BMH) cross-linking techniques were employed. I exploited the specificity of BMH for cysteine residues to show that AtxA was cross-linked at C402, implicating the carboxy-terminal EIIB-like region in protein-protein interactions. In addition, higher amounts of the cross-linked dimeric form of AtxA were observed when cells were cultured in conditions that promote toxin gene expression. Based on the results, I propose that AtxA multimerization requires the EIIB-like motif and multimerization of AtxA positively impacts function. I investigated the role of the PTS in the function of AtxA and the impact of phosphomimetic residues on AtxA multimerization. B. anthracis Enzyme I (EI) and HPr did not facilitate phosphorylation of AtxA in vitro. Moreover, markerless deletion of ptsHI in B. anthracis did not perturb AtxA function. Taken together, these results suggest that proteins other than the PTS phosphorylate AtxA. Point mutations mimicking phosphohistidine (H to D) and non-phosphorylated histidine (H to A) were tested for an impact on AtxA activity and multimerization. AtxA H199D, AtxA H199A, and AtxA H379A displayed multimerization phenotypes similar to that of the native protein, whereas AtxA H379D was not susceptible to BMH cross-linking or co-affinity purification with AtxA-His. These data suggest that phosphorylation of H379 may decrease AtxA activity by preventing AtxA multimerization. Overall, my data support the following model of AtxA function. AtxA binds to target gene promoters in an oligomeric state. AtxA activity is increased in response to the host-related signal bicarbonate/CO2 because this signal enhances AtxA multimerization. In contrast, AtxA activity is decreased by phosphorylation at H379 because multimerization is inhibited. Future studies will address the interplay between bicarbonate/CO2 signaling and phosphorylation on AtxA function.
Resumo:
The ECM of epithelial carcinomas undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How tumors maintain ECM integrity in the face of dynamic biophysical forces is still largely unclear. This study addresses these deficiencies using mouse models of human lung adenocarcinoma. Spontaneous lung tumors were marked by disorganized basement membranes, dense collagen networks, and increased tissue stiffness. Metastasis-prone lung adenocarcinoma cells secreted fibulin-2 (Fbln2), a matrix glycoprotein involved in ECM supra-molecular assembly. Fibulin-2 depletion in tumor cells decreased the intra-tumoral abundance of matrix metalloproteinases and reduced collagen cross-linking and tumor compressive properties resulting in inhibited tumor growth and metastasis. Fbln2 deposition within intra-tumoral fibrotic bands was a predictor of poor clinical outcome in patients. Collectively, these findings support a feed-forward model in which tumor cells secrete matrix-stabilizing factors required for the assembly of ECM that preferentially favors malignant progression. To our knowledge, this is the first evidence that tumor cells directly regulate the integrity of their surrounding matrix through the secretion of matrix-stabilizing factors such as fibulin-2. These findings open a new avenue of research into matrix assembly molecules as potential therapeutic targets in cancer patients.
Resumo:
Transglutaminases are a family of enzymes that catalyze the covalent cross-linking of proteins through the formation of $\varepsilon$-($\gamma$-glutaminyl)-lysyl isopeptide bonds. Tissue transglutaminase (Tgase) is an intracellular enzyme which is expressed in terminally differentiated and senescent cells and also in cells undergoing apoptotic cell death. To characterize this enzyme and examine its relationship with other members of the transglutaminase family, cDNAs, the first two exons of the gene and 2 kb of the 5$\sp\prime$ flanking region, including the promoter, were isolated. The full length Tgase transcript consists of 66 bp of 5$\sp\prime$-UTR (untranslated) sequence, an open reading frame which encodes 686 amino acids and 1400 bp of 3$\sp\prime$-UTR sequence. Alignment of the deduced Tgase protein sequence with that of other transglutaminases revealed regions of strong homology, particularly in the active site region.^ The Tgase cDNA was used to isolate and characterize a genomic clone encompassing the 5$\sp\prime$ end of the mouse Tgase gene. The transcription start site was defined using genomic and cDNA clones coupled with S1 protection analysis and anchored PCR. This clone includes 2.3 kb upstream of the transcription start site and two exons that contain the first 256 nucleotides of the mouse Tgase cDNA sequence. The exon intron boundaries have been mapped and compared with the exon intron boundaries of three members of the transglutaminase family: human factor XIIIa, the human keratinocyte transglutaminase and human erythrocyte band 4.1. Tissue Tgase exon II is similar to comparable exons of these genes. However, exon I bears no resemblance with any of the other transglutaminase amino terminus exons.^ Previous work in our laboratory has shown that the transcription of the Tgase gene is directly controlled by retinoic acid and retinoic acid receptors. To identify the region of the Tgase gene responsible for regulating its expression, fragments of the Tgase promoter and 5$\sp\prime$-flanking region were cloned into the chloramphenicol actetyl transferase (CAT) reporter constructs. Transient transfection experiments with these constructs demonstrated that the upstream region of Tgase is a functional promoter which contains a retinoid response element within a 1573 nucleotide region spanning nucleotides $-$252 to $-$1825. ^
Resumo:
The purpose of this work was to examine the possible mechanisms for the regulation of cytochrome c gene expression in response to increased contractile activity in rat skeletal muscle. The working hypothesis was that increased contractile activity enhances cytochrome c gene expression through a cis-element. A 110% increase in cytochrome c mRNA concentration was observed in tibialis anterior (TA) muscle after 9 days of chronic stimulation. Similar difference (120%) exists between soleus (SO) muscle of higher contractile activity and white vastus lateralis (WV) muscle of lower contractile activity. These results suggest that the endogenous cytochrome c gene expression is regulated by contractile activity. Cytochrome c-reporter genes were injected into skeletal muscles to identify the cis-element that is responsible for the regulation. Although the data was inconclusive, part of it suggested the importance of the 3$\sp\prime$-untranslated region (3$\sp\prime$-UTR) in mediating the response to increased contractile activity.^ RNA gel mobility shift (GMSA) and ultraviolet (UV) cross-linking assays revealed specific RNA-protein interaction in a 50-nucleotide region of the 3$\sp\prime$-UTR in unstimulated TA muscle. Computer analysis predicted a stem-loop structure of 17 nucleotides, which provides a structural basis for RNA-protein interaction. These 17 nucleotides are 100% conserved among rat, mouse and human cytochrome c genes and their 13 pseudogenes, suggesting a functional role for this region. The RNA-protein interaction was significantly less in highly active SO muscle than in inactive WV muscle and was dramatically decreased in stimulated TA muscle due to a protein inhibitor(s) associated with ribosome. It is possible that cytochrome c mRNAs undergoing translation are subject to a compartmentalized regulatory influence.^ The conclusion from these results is that increases in contractile activity induce or activate a protein inhibitor(s) associated with ribosome in rat skeletal muscle. The inhibitor decreases RNA-protein interaction in the 3$\sp\prime$-UTR of cytochrome c mRNA, which may result in increased mRNA stability and/or translation. ^
Resumo:
Tissue transglutaminase (tTGase) is an enzyme that catalyzes the posttranslational modification of proteins via Ca2+-dependent cross-linking reactions. In this study, we extended our earlier observation that tTGase is highly expressed in MCF-7 human breast carcinoma cells selected for the multidrug resistance phenotype (MCF-7/DOX). To directly assess the involvement of tTGase in drug resistance, parental MCF-7 (MCF-7/WT) cells were transfected with cDNAs encoding either a catalytically active (wildtype) or inactive (mutant) tTGase protein. Expression of wildtype tTGase led to spontaneous apoptosis in MCF-7/WT cells, while the mutant tTGase was tolerated by the cells but did not confer resistance to doxorubicin. Analysis of calcium by a spectrofluorometric technique revealed that MCF-7/DOX cells exhibit a defective mechanism in intracellular calcium mobilization, which may play a role in preventing the in situ activation of tTGase and thus allowing the cells to grow despite expressing this enzyme. An elevation in intracellular calcium by treatment with the calcium ionophore A23187 induced rapid and substantial apoptosis in MCF-7/DOX cells as determined by morphological and biochemical criteria. Pretreatment of MCF-7/DOX cells with a tTGase-specific inhibitor (monodansylcadaverine) suppressed A12387-induced apoptosis, suggesting the possible involvement of tTGase-catalyzed protein cross-linking activity. A23187-induced apoptosis in MCF-7/DOX cells was further characterized by PARP cleavage and activation of downstream caspases (-3, -6, and -7). Another interesting aspect of tTGase/A23187-induced apoptosis in MCF-7/DOX cells was that these cells failed to show any prototypic changes associated with the mitochondrial (altered membrane potential, cytochrome c release, caspase-9 activation), receptor-induced (Bid cleavage), or endoplasmic reticulum-stressed (caspase-12 activation) apoptotic pathways. In summary, our data demonstrate that, despite being highly resistant to conventional chemotherapeutic drugs, MCF-7/DOX cells are highly sensitive to apoptosis induced by increased intracellular calcium. We conclude that tTGase does not play a direct role in doxorubicin resistance in MCF-7/DOX cells, but may play a role in enhancing the sensitivity of these cells to undergo apoptosis. ^
Resumo:
The contraction of the actomyosin cytoskeleton, which is produced by the sliding of myosin II along actin filaments, drives important cellular activities such as cytokinesis and cell migration. To explain the contraction velocities observed in such physiological processes, we have studied the contraction of intact cytoskeletons of Dictyostelium discoideum cells after removing the plasma membrane using Triton X-100. The technique developed in this work allows for the quantitative measurement of contraction rates of individual cytoskeletons. The relationship of the contraction rates with forces was analyzed using three different myosins with different in vitro sliding velocities. The cytoskeletons containing these myosins were always contractile and the contraction rate was correlated with the sliding velocity of the myosins. However, the values of the contraction rate were two to three orders of magnitude slower than expected from the in vitro sliding velocities of the myosins, presumably due to internal and external resistive forces. The contraction process also depended on actin cross-linking proteins. The lack of α-actinin increased the contraction rate 2-fold and reduced the capacity of the cytoskeleton to retain internal materials, while the lack of filamin resulted in the ATP-dependent disruption of the cytoskeleton. Interestingly, the myosin-dependent contraction rate of intact contractile rings is also reportedly much slower than the in vitro sliding velocity of myosin, and is similar to the contraction rates of cytoskeletons (different by only 2–3 fold), suggesting that the contraction of intact cells and cytoskeletons is limited by common mechanisms.
Resumo:
Thermomechanical relaxation events and different water states in cottonseed protein bioplastics are presented whilst investigating the effects of aldehyde cross-linking agents. Thermomechanical relaxation of cottonseed protein bioplastics associated with protein denaturation, moisture absorption and broad glass transitions (Tg) were observed from DSC and DMA measurements. It was shown that variation of the aldehyde influences the storage modulus at very low temperature (below Tg). From measurements of the water fusion point, enthalpy, vaporisation, and weight loss, three water states in the water-absorbed bioplastics are suggested; namely strongly-bound-to-polymer, weakly-bound-to-polymer and bulk-like water. The water content and unreacted cross-linking agents are influential factors in controlling formation of the different water states, whilst the selection of different aldehydes was found to be negligible. These results could be valuable for adjusting the thermomechanical relaxations of protein based bioplastics, and tailoring their properties in wet environments.
Resumo:
The actin cytoskeleton plays a key role in the deformability of the cell and in mechanosensing. Here we analyze the contributions of three major actin cross-linking proteins, myosin II, a-actinin and filamin, to cell deformability, by using micropipette aspiration of Dictyostelium cells. We examine the applicability of three simple mechanical models: for small deformation, linear viscoelasticity and drop of liquid with a tense cortex; and for large deformation, a Newtonian viscous fluid. For these models, we have derived linearized equations and we provide a novel, straightforward methodology to analyze the experiments. This methodology allowed us to differentiate the effects of the cross-linking proteins in the different regimes of deformation. Our results confirm some previous observations and suggest important relations between the molecular characteristics of the actin-binding proteins and the cell behavior: the effect of myosin is explained in terms of the relation between the lifetime of the bond to actin and the resistive force; the presence of a-actinin obstructs the deformation of the cytoskeleton, presumably mainly due to the higher molecular stiffness and to the lower dissociation rate constants; and filamin contributes critically to the global connectivity of the network, possibly by rapidly turning over crosslinks during the remodeling of the cytoskeletal network, thanks to the higher rate constants, flexibility and larger size. The results suggest a sophisticated relationship between the expression levels of actinbinding proteins, deformability and mechanosensing.
Resumo:
Protein engineering of gluten, the exogenous effector in celiac disease, seeking its detoxification by selective chemical modification of toxic epitopes is a very attractive strategy and promising technology when compared to pharmacological treatment or genetic engineering of wheat. Here we present a simple and efficient chemo-enzymatic methodology that decreases celiac disease toxic epitopes of gluten proteins improving its technological value through microbial transglutaminase-mediated transamidation of glutamine with n-butylamine under reducing conditions. First, we found that using low concentrations of amine-nucleophile under non-reducing conditions, the decrease in toxic epitopes is mainly due to transglutaminase-mediated cross-linking. Second, using high amine nucleophile concentrations protein cross-linking is substantially reduced. Third, reducing conditions increase 7-fold the transamidation reaction further decreasing toxic epitopes amount. Fourth, using n-butylamine improves gluten hydrophobicity that strengthens the gluten network. These results open the possibility of tailoring gluten for producing hypoallergenic flours while still taking advantage of the unique viscoelastic properties of gluten.
Resumo:
The receptor 2B4 belongs to the Ig superfamily and is found on the surface of all murine natural killer (NK) cells as well as T cells displaying non-MHC-restricted cytotoxicity. Previous studies have suggested that 2B4 is an activating molecule because cross-linking of this receptor results in increased cytotoxicity and γ-interferon secretion as well as granule exocytosis. However, it was recently shown that the gene for 2B4 encodes two different products that arise by alternative splicing. These gene products differ solely in their cytoplasmic domains. One form has a cytoplasmic tail of 150 amino acids (2B4L) and the other has a tail of 93 amino acids (2B4S). To determine the function of each receptor, cDNAs for 2B4S and 2B4L were transfected into the rat NK cell line RNK-16. Interestingly, the two forms of 2B4 had opposing functions. 2B4S was able to mediate redirected lysis of P815 tumor targets, suggesting that this form represents an activating receptor. However, 2B4L expression led to an inhibition of redirected lysis of P815 targets when the mAb 3.2.3 (specific for rat NKRP1) was used. In addition, 2B4L constitutively inhibits lysis of YAC-1 tumor targets. 2B4L is a tyrosine phosphoprotein, and removal of domains containing these residues abrogates its inhibitory function. Like other inhibitory receptors, 2B4L associates with the tyrosine phosphatase SHP-2. Thus, 2B4L is an inhibitory receptor belonging to the Ig superfamily.
Resumo:
During protein synthesis, the two elongation factors Tu and G alternately bind to the 50S ribosomal subunit at a site of which the protein L7/L12 is an essential component. L7/L12 is present in each 50S subunit in four copies organized as two dimers. Each dimer consists of distinct domains: a single N-terminal (“tail”) domain that is responsible for both dimerization and binding to the ribosome via interaction with the protein L10 and two independent globular C-terminal domains (“heads”) that are required for binding of elongation factors to ribosomes. The two heads are connected by flexible hinge sequences to the N-terminal domain. Important questions concerning the mechanism by which L7/L12 interacts with elongation factors are posed by us in response to the presence of two dimers, two heads per dimer, and their dynamic, mobile properties. In an attempt to answer these questions, we constructed a single-headed dimer of L7/L12 by using recombinant DNA techniques and chemical cross-linking. This chimeric molecule was added to inactive core particles lacking wild-type L7/L12 and shown to restore activity to a level approaching that of wild-type two-headed L7/L12.