933 resultados para PHASE-BEHAVIOR
Resumo:
This study was to investigate the impacts of operating conditions and liquid properties on the hydrodynamics and volumetric mass transfer coefficient in activated sludge air-lift reactors. Experiments were conducted in internal and external air-lift reactors. The activated sludge liquid displayed a non-Newtonian rheological behavior. With an increase in the superficial gas velocity, the liquid circulation velocity, gas holdup and mass transfer coefficient increased, and the gas residence time decreased. The liquid circulation velocity, gas holdup and the mass transfer coefficient decreased as the sludge loading increased. The flow regime in the activated sludge air-lift reactors had significant effect on the liquid circulation velocity and the gas holdup, but appeared to have little impact on the mass transfer coefficient. The experimental results in this study were best described by the empirical models, in which the reactor geometry, superficial gas velocity and/or power consumption unit, and solid and fluid properties were employed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate the critical behavior of the spectral weight of a single quasiparticle, one of the key observables in experiment, for the particular case of the transverse Ising model. Series expansions are calculated for the linear chain and the square and simple cubic lattices. For the chain model, a conjectured exact result is discovered. For the square and simple cubic lattices, series analyses are used to estimate the critical exponents. The results agree with the general predictions of Sachdev [Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999)].
Resumo:
We introduce a positive phase-space representation for fermions, using the most general possible multimode Gaussian operator basis. The representation generalizes previous bosonic quantum phase-space methods to Fermi systems. We derive equivalences between quantum and stochastic moments, as well as operator correspondences that map quantum operator evolution onto stochastic processes in phase space. The representation thus enables first-principles quantum dynamical or equilibrium calculations in many-body Fermi systems. Potential applications are to strongly interacting and correlated Fermi gases, including coherent behavior in open systems and nanostructures described by master equations. Examples of an ideal gas and the Hubbard model are given, as well as a generic open system, in order to illustrate these ideas.
Resumo:
As alcohol molecules such as methanol and ethanol have both polar and non-polar groups, their adsorption behavior is governed by the contributions of dispersion interaction (alkyl group) and hydrogen bonding (OH group). In this paper, the adsorption behavior of alcohol molecules and its effect on transport processes are elucidated. From the total permeability (B-T) of alcohol molecules in activated carbon, an adsorption mechanism is proposed, describing well the experimental data, by taking combination effects of clustering, entering micropores, layering and pore filling processes. Unlike the case of non-polar compounds, it was found that at low pressures there are two rises in the BT of alcohol molecules in activated carbon. The first rise is due to the major contribution of surface diffusion to the transport (which is the case of non-polar molecules) and the second one may be associated with cluster formation at the edge of micropores and entering micropores when the clusters are sufficiently large enough to induce a dispersive energy. In addition the clusters formed may enhance surface diffusion at low pressures and hinder gas phase diffusion and flow in meso/macropores. (c) 2006 Elsevier Ltd. All fights reserved.
Resumo:
We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate R=14, an RS critical transition point at pc 0.67 while the critical RSB transition point is located at pc 0.7450±0.0050, to be compared with the corresponding Shannon bound 1-R. For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed. © 2006 The American Physical Society.
Resumo:
Charge transport and dielectric measurements were carried out on compacted powder and single-crystal samples of bistable RbxMn[Fe(CN)6]y·zH2O in the two valence-tautomeric forms (MnIIFeIII and MnIIIFeII) as a function of temperature (120-350 K) and frequency (10-2-106 Hz). The complex conductivity data reveal universal conductivity behavior and obey the Barton-Nakajima-Namikawa relationship. The charge transport is accompanied by dielectric relaxation that displays the same thermal activation energy as the conductivity. Surprisingly, the activation energy of the conductivity was found very similar in the two valence-tautomeric forms (0.55 eV), and the conductivity change between the two phases is governed mainly by the variation of the preexponential factor in each sample. The phase transition is accompanied by a large thermal hysteresis of the conductivity and the dielectric constant. In the hysteresis region, however, a crossover occurs in the charge transport mechanism at T < 220 K from an Arrhenius-type to a varying activation energy behavior, conferring an unusual “double-loop” shape to the hysteresis.
Resumo:
In spite of the increasing significance of broadband, many small and medium enterprises (SMEs) are unaware of or unappreciative of its benefits. This is potentially a problem for governments, Internet Service Providers and other supply side institutions. The current study empirically verifies applicability of an extended IS continuance model controlling for organizational variables based on the Technology-Organization-Environment framework to examine factors influencing broadband post-adoption behavior of SMEs in Singapore. Strong support for the model has been manifested by the results, providing insight into influential factors. Results of the study suggest that perceived usefulness is a strong predictor of users’ continuance intention, followed by satisfaction with broadband usage as a significant but weaker predictor. SMEs in a more competitive business environment and whose key executive possesses greater IT knowledge are more likely to use broadband.
Resumo:
The structure and spin-crossover magnetic behavior of [FeII16][BF4]2 (1 = isoxazole) and [FeII16][ClO4]2 have been studied. [FeII16][BF4]2 undergoes two reversible spin-crossover transitions at 91 and 192 K, and is the first two-step spin transition to undergo a simultaneous crystallographic phase transition, but does not exhibit thermal hysteresis. The single-crystal structure determinations at 260 [space group P3̄, a = 17.4387(4) Å, c = 7.6847(2) Å] and at 130 K [space group P1̄, a = 17.0901(2) Å, b = 16.7481(2) Å, c = 7.5413(1) Å, α = 90.5309(6)°, β = 91.5231(6)°, γ = 117.8195(8)°] reveal two different iron sites, Fe1 and Fe2, in a 1:2 ratio. The room-temperature magnetic moment of 5.0 μB is consistent with high-spin Fe(II). A plateau in μ(T) having a moment of 3.3 μB centered at 130 K suggests a mixed spin system of some high-spin and some low-spin Fe(II) molecules. On the basis of the Fe−N bond distances at the two temperatures, and the molar fraction of high-spin molecules at the transition plateau, Fe1 and Fe2 can be assigned to the 91 and 192 K transitions, respectively. [FeII16][ClO4]2 [space group P3̄, a = 17.5829(3) Å, c = 7.8043(2) Å, β = 109.820 (3)°, T = 295 K] also possesses Fe1:Fe2 in a 1:2 ratio, and magnetic measurements show a single spin transition at 213 K, indicating that both Fe1 and Fe2 undergo a simultaneous spin transition. [FeII16][ClO4]2 slowly decomposes in solutions containing acetic anhydride to form [FeIII3O(OAc)613][ClO4] [space group I2, a = 10.1547(7) Å, b = 16.5497(11) Å, c = 10.3205(9) Å, β = 109.820 (3)°, T = 200 K]. The isosceles Fe3 unit contains two Fe···Fe distances of 3.2844(1) Å and a third Fe···Fe distance of 3.2857(1) Å. The magnetic data can be fit to a trinuclear model with ℋ = −2J(S1·S2 + S2·S3) − 2J13(S1·S3), where J = −27.1 and J13 = −32.5 cm-1.
Resumo:
Hypercoiling poly(styrene-ALT-maleic anhydride) (PSMA) is known to undergo conformational transition in response to environmental stimuli. This behavior allows it to associate with the phospholipid, 2-dilauryl-SN-glycero-3- phosphocholine (DLPC) to produce nanostructures analogous to lipoproteins. The complex represents a new bio-mimetic delivery vehicle with applications in the cosmetic and pharmaceutical industries. This study investigates, for the first time, the association behavior of PSMA and DLPC through the combination of different analytical techniques. The results indicate that the association is primarily driven by hydrophobic interactions and depends on various factors including the polymer/lipid ratio, the polymer molecular weight and the pH of the aqueous environment. The conformational transition of PSMA leads to the formation of discrete micellar complexes involving anisotropic-to-isotropic lipid phase transformation. As the number of hydrophobic moieties in the polymer is increased, the pH-dependent conformational transition of the polymer plays less important part in achieving this phase transition of the lipid. © (2012) Trans Tech Publications.
Resumo:
Materials known as Mn+1AXn phases, where n is 1, 2, or 3, and M represents an early transition metal, A an A-group element, and X is either Carbon and/or Nitrogen [1], are fast becoming technologically important materials due to the interesting combination of unique properties. However, a lot of important information about the high temperature and high pressure behavior of many of these compounds is still missing, which needs to be determined systematically. ^ In this dissertation the synthesis of M2AC (M = Ti, V, Cr, Nb, Zr) and A = (Al, Sn, S) compounds by arc melting, vacuum sintering and piston cylinder synthesis is presented along with the synthesis of Zr 2SC, which has been synthesized for first time in bulk form, by piston cylinder technique. The microstructural analysis by electron microscopy and phase analysis by x-ray diffraction is presented next. Finally, a critical analysis of the behavior of these compounds under the application of extreme pressure (as high as 50 GPa) and temperature (≈ 1000°C) is presented. ^ The high pressure studies, up to 50 GPa, showed that these compounds were structurally intact and their bulk moduli ranged from 140 to 190 GPa. The high temperature studies in the inert atmosphere showed that the M 2SnC compounds were unstable above 650°C and the expansion along the a-axis was higher than that along the c-axis, unlike the other phases. M2SC compounds on the other hand showed negligible difference in the thermal expansion along the two axes. The oxidation study revealed that Ti2AC (Al, S) compounds had highest resistance to oxidation while the M2SnC compounds had the least. Furthermore, from the oxidation study of these compounds, which were short time oxidation experiments, it was found that all of these compounds oxidized to their respective binary oxides. ^
Resumo:
In this paper we analyze the structure of Fe-Ga layers with a Ga content of ∼30 at.% deposited by the sputtering technique under two different regimes. We also studied the correlation between the structure and magnetic behavior of the samples. Keeping the Ar pressure fixed, we modified the flow regime from ballistic to diffusive by increasing the distance between the target and the substrate. X-ray diffraction measurements have shown a lower structural quality when growing in the diffusive flow. We investigated the impact of the growth regime by means of x-ray absorption fine structure (XAFS) measurements and obtained signs of its influence on the local atomic order. Full multiple scattering and finite difference calculations based on XAFS measurements point to a more relevant presence of a disordered A2 phase and of orthorhombic Ga clusters on the Fe-Ga alloy deposited under a diffusive regime; however, in the ballistic sample, a higher presence of D0_3/B2 phases is evidenced. Structural characteristics, from local to long range, seem to determine the magnetic behavior of the layers. Whereas a clear in-plane magnetic anisotropy is observed in the film deposited under ballistic flow, the diffusive sample is magnetically isotropic. Therefore, our experimental results provide evidence of a correlation between flow regime and structural properties and its impact on the magnetic behavior of a rather unexplored compositional region of Fe-Ga compounds.
Resumo:
Aurivillius phase Bi 5Ti 3Fe 0.7Co 0.3O 15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn 3 substituted, Bi 5Ti 3Fe 0.7Mn 0.3O 15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, B r, of 6.37 emu/cm 3 (or 804 memu/g), remanent moment 4.99 × 10 -5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95 Fe/Co-rich spinel phase, likely CoFe 2 - xTi xO 4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi 5Ti 3Fe 0.7Co 0.3O 15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi 5Ti 3Fe 0.7Co 0.3O 15 phase is a novel ferroelectric and has potential commercial applications in high temperature piezoelectric and ferroelectric memory technologies. The implications for the conclusive demonstration of ferroelectric and ferromagnetic properties in single-phase materials of this type are discussed.
Resumo:
Scent-marking behavior is associated with different behavioral contexts in callitrichids, including signalizing a territory, location of feeding resources, and social rank. In marmosets and tamarins it is also associated with intersexual communication. Though it appears very important for the daily routine of the individuals, very few researchers have investigated distribution through the 24-h cycle. In a preliminary report, we described a preferential incidence of this behavior 2 h before nocturnal rest in families of common marmosets. We expand the data using 8 family groups (28 subjects), 8 fathers, 6 mothers, 8 nonreproductive adults (4 sons and 4 daughters), and 6 juvenile (3 sons and 3 daughters) offspring that we kept in outdoor cages under natural environmental conditions. We recorded the frequency of anogenital scent marking for each group during the light phase, twice a wk, for 4 consecutive wks, from March 1998 to September 1999. Cosinor test detected 24- and 8-h variations in 89.3% and 85.7% of the subjects, respectively, regardless of sex or reproductive status. The 8-h component is a consequence of the 2 peaks for the behavior, at the beginning and end of the light phase. Daily distribution of scent marking is similar to that others described previously for motor activity in marmosets. The coincident rhythmical patterns for both behaviors seem to be associated with feeding behavior, as described for callitrichids in free-ranging conditions, involving an increase in foraging activities early in the morning and shortly before nocturnal rest
Resumo:
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.
Resumo:
Ce mémoire présente un modèle mathématique et numérique pour analyser le comportement d’une unité de stockage thermique à changement de phase solide-liquide représentée par un tube autour duquel se trouve le matériau à changement de phase. Le système est soumis à une charge oscillant entre le chauffage et le refroidissement. Une analyse d’ordre de grandeur permet de prédire le comportement du système en fonction des principaux nombres adimensionnels. Un paramètre adimensionnel est proposé pour délimiter les concepts dans lesquels la conduction domine par rapport à ceux où la convection naturelle domine. L’étude dévoile l’impact des paramètres de conception de l’unité de stockage thermique sur son fonctionnement et approfondit les connaissances dans le domaine du changement de phase avec convection naturelle. Différents indicateurs ont été développés pour analyser la performance du système, tels que les dimensions de la zone affectée thermiquement, le volume fondu ou solidifié et une analyse fréquentielle. Des corrélations sont proposées pour déterminer facilement le comportement du système.