903 resultados para PEG-PCL copolymer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A particulate microemulsion is generated in a simple two-component system comprising an amphiphilic copolymer (Pluronic P123) in mixtures with tannic acid. This is correlated to complexation between the poly(ethylene oxide) in the Pluronic copolymer and the multiple hydrogen bonding units in tannic acid which leads to the breakup of the ordered structure formed in gels of Pluronic copolymers, and the formation of dispersed nanospheres containing a bicontinuous internal structure. These novel nanoparticles termed ‘‘emulsomes’’ are self-stabilized by a coating layer of Pluronic copolymer. The microemulsion exhibits a pearlescent appearance due to selective light scattering from the emulsion droplets. This simple formulation based on a commercial copolymer and a biofunctional and biodegradable additive is expected to find applications in the fast moving consumer goods sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase behavior of grafted d-polystyrene-block-poly(methyl methacrylate) diblock copolymer films is examined, with particular focus on the effect of solvent and annealing time. It was observed that the films undergo a two-step transformation from an initially disordered state, through an ordered metastable state, to the final equilibrium configuration. It was also found that altering the solvent used to wash the films, or complete removal of the solvent prior to thermal annealing using supercritical CO2, could influence the structure of the films in the metastable state, though the final equilibrium state was unaffected. To aid in the understanding to these experimental results, a series of self-consistent field theory calculations were done on a model diblock copolymer brush containing solvent. Of the different models examined, those which contained a solvent selective for the grafted polymer block most accurately matched the observed experimental behavior. We hypothesize that the structure of the films in the metastable state results from solvent enrichment of the film near the film/substrate interface in the case of films washed with solvent or faster relaxation of the nongrafted block for supercritical CO2 treated (solvent free) films. The persistence of the metastable structures was attributed to the slow reorganization of the polymer chains in the absence of solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the numerical accuracy, computational cost, and memory requirements of self-consistent field theory (SCFT) calculations when the diffusion equations are solved with various pseudo-spectral methods and the mean field equations are iterated with Anderson mixing. The different methods are tested on the triply-periodic gyroid and spherical phases of a diblock-copolymer melt over a range of intermediate segregations. Anderson mixing is found to be somewhat less effective than when combined with the full-spectral method, but it nevertheless functions admirably well provided that a large number of histories is used. Of the different pseudo-spectral algorithms, the 4th-order one of Ranjan, Qin and Morse performs best, although not quite as efficiently as the full-spectral method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that terraces at the air-polymer interface of lamella forming diblock copolymers do not make discontinuous jumps in height. Despite the underlying discretized structure, the height profiles are smoothly varying. The width of a transition region of a terrace edge in isolation is typically several hundreds of nanometres, resulting from a balance between surface tension, chain stretching penalties, and the enthalpy of mixing. What is less well known in these systems is what happens when two transition regions interact with one another. In this study, we investigate the dynamics of the interactions between copolymer lamellar edges. We find that the data can be well described by a model that assumes a repulsion between adjacent edges. While the model is simplistic, and does not include molecular level details, its agreement with the data suggest that some of the the underlying assumptions provide insight into the complex interplay between defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium phase diagrams are calculated for a selection of two-component block copolymer architectures using self-consistent field theory (SCFT). The topology of the phase diagrams is relatively unaffected by differences in architecture, but the phase boundaries shift significantly in composition. The shifts are consistent with the decomposition of architectures into constituent units as proposed by Gido and coworkers, but there are significant quantitative deviations from this principle in the intermediate-segregation regime. Although the complex phase windows continue to be dominated by the gyroid (G) phase, the regions of the newly discovered Fddd (O^70) phase become appreciable for certain architectures and the perforated-lamellar (PL) phase becomes stable when the complex phase windows shift towards high compositional asymmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly in aqueous solution of PEG-peptide conjugates comprising a model amyloid peptide sequence FFKLVFF that contains the Ab(16–20) KLVFF motif is investigated. X-ray diffraction reveals different packing motifs dependent on PEG chain length. This is correlated to remarkable differences in self-assembled nanostructures. The control of strand registry points to a subtle interplay between aromatic stacking, electrostatic and amphiphilic interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of a non-ionic polymeric surfactant on the self-assembly of a peptide amphiphile (PA) that forms nanotapes is investigated using a combination of microscopic, scattering and spectroscopic techniques. Mixtures of Pluronic copolymer P123 with the PA C16-KTTKS in aqueous solution were studied at a fixed concentration of the PA at which it is known to self-assemble into extended nanotapes, but varying P123 concentration. We find that P123 can disrupt the formation of C16- KTTKS nanotapes, leading instead to cylindrical nanofibril structures. The spherical micelles formed by P123 at room temperature are disrupted in the presence of the PA. There is a loss of cloudiness in the solutions as the large nanotape aggregates formed by C16-KTTKS are broken up, by P123 solubilization. At least locally, b-sheet structure is retained, as confirmed by XRD and FTIR spectroscopy, even for solutions containing 20 wt% P123. This indicates, unexpectedly, that peptide secondary structure can be retained in solutions with high concentration of non-ionic surfactant. Selfassembly in this system exhibits slow kinetics towards equilibrium, the initial self-assembly being dependent on the order of mixing. Heating above the lipid chain melting temperature assists in disrupting trapped non-equilibrium states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing use of drug combinations to treat disease states, such as cancer, calls for improved delivery systems that are able to deliver multiple agents. Herein, we report a series of novel Janus dendrimers with potential for use in combination therapy. Different generations (first and second) of PEG-based dendrons containing two different “model drugs”, benzyl alcohol (BA) and 3-phenylpropionic acid (PPA), were synthesized. BA and PPA were attached via two different linkers (carbonate and ester, respectively) to promote differential drug release. The four dendrons were coupled together via (3 + 2) cycloaddition chemistries to afford four Janus dendrimers, which contained varying amounts and different ratios of BA and PPA, namely, (BA)2-G1-G1-(PPA)2, (BA)4-G2-G1-(PPA)2, (BA)2-G1-G2-(PPA)4, and (BA)4-G2-G2-(PPA)4. Release studies in plasma showed that the dendrimers provided sequential release of the two model drugs, with BA being released faster than PPA from all of the dendrons. The different dendrimers allowed delivery of increasing amounts (0.15–0.30 mM) and in exact molecular ratios (1:2; 2:1; 1:2; 2:2) of the two model drug compounds. The dendrimers were noncytotoxic (100% viability at 1 mg/mL) toward human umbilical vein endothelial cells (HUVEC) and nontoxic toward red blood cells, as confirmed by hemolysis studies. These studies demonstrate that these Janus PEG-based dendrimers offer great potential for the delivery of drugs via combination therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer–doxorubicin (Dox) has already shown clinical activity in breast cancer patients. Moreover, we have recently found that an HPMA conjugate containing a combination of both Dox and the aromatase inhibitor aminoglutethimide (AGM) shows significantly increased anti-tumour activity in vitro. To better understand the mechanism of action of HPMA copolymer–AGM conjugates several models were used here to investigate their effect on cell growth and aromatase inhibition. Cytotoxicity of HPMA copolymer conjugates containing AGM, Dox and also the combination AGM–Dox was determined by MTT assay in MCF-7 and MCF-7ca cells. Androstenedione (5 × 10− 8 M) stimulates the growth of MCF-7ca cells. Both free AGM and polymer-bound AGM (0.2–0.4 mg/ml) were shown to block this mitogenic activity. When MCF-7ca cells were incubated [3H]androstenedione both AGM and HPMA copolymer–GFLG–AGM (0.2 mg/ml AGM-equiv.) showed the ability to inhibit aromatase. Although, free AGM was able to inhibit isolated human placental microsomal aromatase in a concentration dependent manner, polymer-bound AGM was not, suggesting that drug release is essential for activity of the conjugate. HPMA copolymer conjugates containing aromatase inhibitors have potential for the treatment of hormone-dependant cancers, and it would be particularly interesting to explore further as potential therapies in post-menopausal women as components of combination therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol-1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of b-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-consistent field theory (SCFT) is used to study the step edges that occur in thin films of lamellar-forming diblock copolymer, when the surfaces each have an affinity for one of the polymer components. We examine film morphologies consisting of a stack of ν continuous monolayers and one semi-infinite bilayer, the edge of which creates the step. The line tension of each step morphology is evaluated and phase diagrams are constructed showing the conditions under which the various morphologies are stable. The predicted behavior is then compared to experiment. Interestingly, our atomic force microscopy (AFM) images of terraced films reveal a distinct change in the character of the steps with increasing ν, which is qualitatively consistent with our SCFT phase diagrams. Direct quantitative comparisons are not possible because the SCFT is not yet able to probe the large polymer/air surface tensions characteristic of experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic force microscopy is used to study the ordering dynamics of symmetric diblock copolymer films. The films order to form a lamellar structure which results in a frustration when the film thickness is incommensurate with the lamellae. By probing the morphology of incommensurate films in the early ordering stages, we discover an intermediate phase of lamellae arranged perpendicular to the film surface. This morphology is accompanied by a continuous growth in amplitude of the film surface topography with a characteristic wavelength, indicative of a spinodal process. Using selfconsistent field theory, we show that the observation of perpendicular lamellae suggests an intermediate state with parallel lamellae at the substrate and perpendicular lamellae at the free surface. The calculations confirm that the intermediate state is unstable to thickness fluctuations, thereby driving the spinodal growth of surface structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monte Carlo field-theoretic simulations (MCFTS) are performed on melts of symmetric diblock copolymer for invariant polymerization indexes extending down to experimentally relevant values of N̅ ∼ 10^4. The simulations are performed with a fluctuating composition field, W_−(r), and a pressure field, W_+(r), that follows the saddle-point approximation. Our study focuses on the disordered-state structure function, S(k), and the order−disorder transition (ODT). Although shortwavelength fluctuations cause an ultraviolet (UV) divergence in three dimensions, this is readily compensated for with the use of an effective Flory−Huggins interaction parameter, χ_e. The resulting S(k) matches the predictions of renormalized one-loop (ROL) calculations over the full range of χ_eN and N̅ examined in our study, and agrees well with Fredrickson−Helfand (F−H) theory near the ODT. Consistent with the F−H theory, the ODT is discontinuous for finite N̅ and the shift in (χ_eN)_ODT follows the predicted N̅^−1/3 scaling over our range of N̅.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The remarkable diversity of the self-assembly behavior of PEG−peptides is reviewed, including self-assemblies formed by PEG−peptides with β-sheet and α-helical (coiled-coil) peptide sequences. The modes of self-assembly in solution and in the solid state are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogels are polymeric materials used in many pharmaceutical and biomedical applications due to their ability to form 3D hydrophilic polymeric networks, which can absorb large amounts of water. In the present work, polyethylene glycols (PEG) were introduced into the hydrogel liquid phase in order to improve the mechanical properties of hydrogels composed of 2-hydroxyethylacrylate and 2-hydroxyethylmethacrylate (HEA–HEMA) synthesized with different co-monomer compositions and equilibrated in water or in 20 % water–PEG 400 and 600 solutions. The thermoanalytical techniques [differential scanning calorimetry (DSC) and thermogravimetry (TG)] were used to evaluate the amount and properties of free and bound water in HEA–HEMA hydrogels. The internal structure and the mechanical properties of hydrogels were studied using scanning electron microscopy and friability assay. TG “loss-on-drying” experiments were applied to study the water-retention properties of hydrogels, whereas the combination of TG and DSC allowed estimating the total amount of freezable and non-freezing water in hydrogels. The results show that the addition of viscous co-solvent (PEG) to the liquid medium results in significant improvement of the mechanical properties of HEA–HEMA hydrogels and also slightly retards the water loss from the hydrogels. A redistribution of free and bound water in the hydrogels equilibrated in mixed solutions containing 20 vol% of PEGs takes place.