916 resultados para Ovarian cysts
Resumo:
FGFRL1 is a novel member of the FGF receptor family. It is expressed at very low levels in a great variety of cell lines and at relatively high levels in SW1353 chondrosarcoma cells, MG63 osteosarcoma cells and A204 rhabdomyosarcoma cells. Screening of 241 different human tumors with the help of a cancer profiling array suggested major alterations in the relative expression of FGFRL1 in ovarian tumors. Five distinct ovary tumors were therefore analyzed by quantitative and competitive PCR. Several tumors were found to exhibit a significant decrease in the expression of FGFRL1 in the tumor tissue relative to the matched control tissue. One ovarian tumor showed a 25-fold increase in the relative expression. Since FGFRL1 appears to be involved in the control of cell proliferation and differentiation, its aberrant expression might contribute to the development and progression of ovarian tumors.
Resumo:
We report on a female who is compound heterozygote for two new point mutations in the CYP19 gene. The allele inherited from her mother presented a base pair deletion (C) occurring at P408 (CCC, exon 9), causing a frameshift that results in a nonsense codon 111 bp (37 aa) further down in the CYP19 gene. The allele inherited from her father showed a point mutation from G-->A at the splicing point (canonical GT to mutational AT) between exon and intron 3. This mutation ignores the splice site and a stop codon 3 bp downstream occurs. Aromatase deficiency was already suspected because of the marked virilization occurring prepartum in the mother, and the diagnosis was confirmed shortly after birth. Extremely low levels of serum estrogens were found in contrast to high levels of androgens. Ultrasonographic follow-up studies revealed persistently enlarged ovaries (19.5-22 mL) during early childhood (2 to 4 yr) which contained numerous large cysts up to 4.8 x 3.7 cm and normal-appearing large tertiary follicles already at the age of 2 yr. In addition, both basal and GnRH-induced FSH levels remained consistently strikingly elevated. Low-dose estradiol (E2) (0.4 mg/day) given for 50 days at the age of 3 6/12 yr resulted in normalization of serum gonadotropin levels, regression of ovarian size, and increase of whole body and lumbar spine (L1-L4) bone mineral density. The FSH concentration and ovarian size returned to pretreatment levels shortly (150 days) after cessation of E2 therapy. Therefore, we recommend that affected females be treated with low-dose E2 in amounts sufficient to result in physiological prepubertal E2 concentrations using an ultrasensitive estrogen assay. However, E2 replacement needs to be adjusted throughout childhood and puberty to ensure normal skeletal maturation and adequate adolescent growth spurt, normal accretion of bone mineral density, and, at the appropriate age, female secondary sex maturation.
Resumo:
BACKGROUND: Alveolar echinococcosis (AE) is caused by the larval stage (metacestode) of Echinococcus multilocularis. The domestic dog can act as a definitive host and harbor adult cestodes in its small intestine or become an aberrant intermediate host carrying larval stages that may cause severe lesions in the liver, lungs and other organs with clinical signs similar to AE in humans. CASE PRESENTATION: A case of canine AE, affecting the liver and prostate with development of multilocular hydatid paraprostatic cysts and possible lung involvement is described in an 8-year-old neutered male Labrador retriever dog.The dog presented with progressive weight loss, acute constipation, stranguria and a suspected soft tissue mass in the sublumbar region. Further evaluation included computed tomography of the thorax and abdomen, which revealed cystic changes in the prostate, a paraprostatic cyst, as well as lesions in the liver and lungs. Cytological examination of fine-needle aspirates of the liver, prostate and paraprostatic cyst revealed parasitic hyaline membranes typical of an Echinococcus infection and the presence of E. multilocularis-DNA was confirmed by PCR. The dog was treated with albendazole and debulking surgery was considered in case there was a good response to antiparasitic treatment. Constipation and stranguria resolved completely. Six months after the definitive diagnosis, the dog was euthanized due to treatment-resistant ascites and acute anorexia and lethargy. CONCLUSIONS: To the authors' knowledge, this is the first publication of an E. multilocularis infection in a dog causing prostatic and paraprostatic cysts. Although rare, E. multilocularis infection should be considered as an extended differential diagnosis in dogs presenting with prostatic and paraprostatic disease, especially in areas where E. multilocularis is endemic.
Resumo:
The objective of this study was to assess the prevalence of renal cysts and other renal abnormalities in purebred Maine Coon cats, and to characterise these through genetic typing. Voluntary pre-breeding screening programmes for polycystic kidney disease (PKD) are offered for this breed throughout Switzerland, Germany and other northern European countries. We performed a retrospective evaluation of Maine Coon screening for renal disease at one institution over an 8-year period. Renal ultrasonography was performed in 187 healthy Maine Coon cats. Renal changes were observed in 27 of these cats. Renal cysts were found in seven cats, and were mostly single and unilateral (6/7, 85.7%), small (mean 3.6 mm) and located at the corticomedullary junction (4/6, 66.7%). Sonographical changes indicating chronic kidney disease (CKD) were observed in 10/187 (5.3%) cats and changes of unknown significance were documented in 11/187 (5.9%) cats. All six cats genetically tested for PKD1 were negative for the mutation, and gene sequencing of these cats did not demonstrate any common genetic sequences. Cystic renal disease occurs with a low prevalence in Maine Coons and is unrelated to the PKD observed in Persians and related breeds. Ultrasonographical findings compatible with CKD are not uncommon in juvenile Maine Coons.
Resumo:
The use of biomarkers to infer drug response in patients is being actively pursued, yet significant challenges with this approach, including the complicated interconnection of pathways, have limited its application. Direct empirical testing of tumor sensitivity would arguably provide a more reliable predictive value, although it has garnered little attention largely due to the technical difficulties associated with this approach. We hypothesize that the application of recently developed microtechnologies, coupled to more complex 3-dimensional cell cultures, could provide a model to address some of these issues. As a proof of concept, we developed a microfluidic device where spheroids of the serous epithelial ovarian cancer cell line TOV112D are entrapped and assayed for their chemoresponse to carboplatin and paclitaxel, two therapeutic agents routinely used for the treatment of ovarian cancer. In order to index the chemoresponse, we analyzed the spatiotemporal evolution of the mortality fraction, as judged by vital dyes and confocal microscopy, within spheroids subjected to different drug concentrations and treatment durations inside the microfluidic device. To reflect microenvironment effects, we tested the effect of exogenous extracellular matrix and serum supplementation during spheroid formation on their chemotherapeutic response. Spheroids displayed augmented chemoresistance in comparison to monolayer culturing. This resistance was further increased by the simultaneous presence of both extracellular matrix and high serum concentration during spheroid formation. Following exposure to chemotherapeutics, cell death profiles were not uniform throughout the spheroid. The highest cell death fraction was found at the center of the spheroid and the lowest at the periphery. Collectively, the results demonstrate the validity of the approach, and provide the basis for further investigation of chemotherapeutic responses in ovarian cancer using microfluidics technology. In the future, such microdevices could provide the framework to assay drug sensitivity in a timeframe suitable for clinical decision making.
Resumo:
Platelets represent one of the largest storage pools of angiogenic and oncogenic growth factors in the human body. The observation that thrombocytosis (platelet count >450,000/uL) occurs in patients with solid malignancies was made over 100 years ago. However, the clinical and biological implications as well as the underlying mechanism of paraneoplastic thrombocytosis associated with ovarian carcinoma remains unknown and were the focus of the current study. Following IRB approval, patient data were collected on 619 patients from 4 U.S. centers and used to test associations between platelet count at initial diagnosis, clinicopathologic factors, and outcome. In vitro effects of plasma-purified platelets on ovarian cancer cell proliferation, docetaxel-induced apoptosis, and migration were evaluated using BrdU-PI flow cytometric and two-chamber chemotaxis assays. In vivo effects of platelet depletion on tumor growth, proliferation, apoptosis, and angiogenesis were examined using an anti-platelet antibody (anti-mouse glycoprotein 1ba, Emfret) to reduce platelets by 50%. Complete blood counts and number of mature megakaryocytes in the spleen and bone marrow were compared between control mice and ovarian cancer-bearing mice. Plasma levels of key megakaryo- and thrombopoietic factors including thrombopoietin (TPO), IL-1a, IL-3, IL-4, IL-6, IL-11, G-CSF, GM-CSF, stem cell factor, and FLT-3 ligand were assayed in a subset of 150 patients at the time of initial diagnosis with advanced stage, high grade epithelial ovarian cancer using immunobead-based cytokine profiling coupled with the Luminex® xMAP platform. Plasma cytokines significantly associated with thrombocytosis in ovarian cancer patients were subsequently evaluated in mouse models of ovarian cancer using ELISA immunoassays. The results of human and mouse plasma cytokine profiling were used to inform subsequent in vivo studies evaluating the effect of siRNA-induced silencing of select megakaryo- and thrombopoietic cytokines on paraneoplastic thrombocytosis. Thirty-one percent of patients had thrombocytosis at initial diagnosis. Compared to patients with normal platelet counts, women with thrombocytosis were significantly more likely to have advanced stage disease (p<0.001) and poor median progression-free (0.94 vs 1.35 years, p<0.001) and overall survival (2.62 vs 4.65 years, p<0.001). On multivariate analysis, thrombocytosis remained an independent predictor of decreased overall survival. Our analysis revealed that thrombocytosis significantly increases the risk of VTE in ovarian cancer patients and that thrombocytosis is an independent predictor of increased mortality in women who do develop a blood clot. Platelets increased ovarian cancer cell proliferation and migration by 4.1- and 2.8-fold (p<0.01), respectively. Platelets reduced docetaxel-induced apoptosis in ovarian cancer cells by 2-fold (p<0.001). In vivo, platelet depletion reduced tumor growth by 50%. Staining of in vivo specimens revealed decreased tumor cell proliferation (p<0.001) and increased tumor and endothelial cell apoptosis (p<0.01). Platelet depletion also significantly decreased microvessel density and pericyte coverage (p<0.001). Platelet counts increase by 31-130% in mice with invasive ovarian cancer compared to controls (p<0.01) and strongly correlate with mean megakaryocyte counts in the spleen and bone marrow (r=0.95, p<0.05). Plasma levels of TPO, IL-6, and G-CSF were significantly increased in ovarian cancer patients with thrombocytosis. Plasma levels of the same cytokines were found to be significantly elevated in orthotopic mouse models of ovarian cancer, which consistently develop paraneoplastic thromocytosis. Silencing TPO, IL-6, and G-CSF significantly abrogated paraneoplastic thrombocytosis in vivo. This study provides new understanding of the clinical and biological significance of paraneoplastic thrombocytosis in ovarian cancer and uncovers key humoral factors driving this process. Blocking the development of paraneoplastic thrombocytosis and interfering with platelet-cancer cell interactions could represent novel therapeutic strategies.
Resumo:
Hereditary breast and ovarian cancer (HBOC) is caused by a mutation in the BRCA1 or BRCA2 genes. Women with a BRCA1/2 mutation are at increased risks for breast and ovarian cancer and often develop cancer at an earlier age than the general population. However, some women with a BRCA1/2 mutation do not develop breast or ovarian cancer under the age of 50 years. There have been no specific studies on BRCA positive women with no cancer prior to age 50, therefore this study sought to investigate factors within these women with no cancer under age 50 with respect to reproductive risk factors, BMI, tumor pathology, screening history, risk-reducing surgeries, and family history. 241 women were diagnosed with cancer prior to age 50, 92 with cancer at age 50 or older, and 20 women were over age 50 with no cancer. Data were stratified based on BRCA1 and BRCA2 mutation status. Within the cohorts we investigated differences between women who developed cancer prior to age 50 and those who developed cancer at age 50 or older. We also investigated the differences between women who developed cancer at age 50 or older and those who were age 50 or older with no cancer. Of the 92 women with a BRCA1/2 mutation who developed cancer at age 50 or older, 46 developed ovarian cancer first, 45 developed breast cancer, and one had breast and ovarian cancer diagnosed synchronously. BRCA2 carriers diagnosed age 50 or older were more likely to have ER/PR negative breast tumors when compared to BRCA2 carriers who were diagnosed before age 50. This is consistent with one other study that has been performed. Ashkenazi Jewish women with a BRCA1 mutation were more likely to be diagnosed age 50 or older than other ethnicities. Hispanic women with a BRCA2 mutation were more likely to be diagnosed prior to age 50 when compared to other ethnicities. No differences in reproductive factors or BMI were observed. Further characterization of BRCA positive women with no cancer prior to age 50 may aid in finding factors important in the development of breast or ovarian cancer.
Resumo:
BACKGROUND: Arginine metabolism in tumor cell lines can be influenced by various cytokines, including recombinant human interferon-gamma (rIFN-gamma), a cytokine that shows promising clinical activity in epithelial ovarian cancer (EOC). METHODS: We examined EOC cell lines for the expression of arginase in an enzymatic assay and for transcripts of arginase I and II, inducible nitric oxide synthase (iNOS), and indoleamine 2,3-dioxygenase (IDO) by reverse transcription-polymerase chain reaction. The effects of rIFN-gamma on arginase activity and on tumor cell growth inhibition were determined by measuring [3H]thymidine uptake. RESULTS: Elevated arginase activity was detected in 5 of 8 tumor cell lines, and analysis at the transcriptional level showed that arginase II was involved but arginase I was not. rIFN-gamma reduced arginase activity in 3 EOC cell lines but increased activity in the 2008 cell line and its platinum-resistant subline, 2008.C13. iNOS transcripts were not detected in rIFN-gamma-treated or untreated cell lines. In contrast, IDO activity was induced or increased by rIFN-gamma. Suppression of arginase activity by rIFN-gamma in certain cell lines suggested that such inhibition might contribute to its antiproliferative effects. However, supplementation of the medium with polyamine pathway products did not interfere with the growth-inhibitory effects of rIFN-gamma EOC cells. CONCLUSIONS: Increased arginase activity, specifically identified with arginase II, is present in most of the tested EOC cell lines. rIFN-gamma inhibits or stimulates arginase activity in certain EOC cell lines, though the decrease in arginase activity does not appear to be associated with the in vitro antiproliferative activity of rIFN-gamma. Since cells within the stroma of EOC tissues could also contribute to arginine metabolism following treatment with rIFN-gamma or rIFN-gamma-inducers, it would be helpful to examine these effects in vivo.
Resumo:
PURPOSE: Resistance to platinum chemotherapy remains a significant problem in ovarian carcinoma. Here, we examined the biological mechanisms and therapeutic potential of targeting a critical platinum resistance gene, ATP7B, using both in vitro and in vivo models. EXPERIMENTAL DESIGN: Expression of ATP7A and ATP7B was examined in ovarian cancer cell lines by real-time reverse transcription-PCR and Western blot analysis. ATP7A and ATP7B gene silencing was achieved with targeted small interfering RNA (siRNA) and its effects on cell viability and DNA adduct formation were examined. For in vivo therapy experiments, siRNA was incorporated into the neutral nanoliposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC). RESULTS: ATP7A and ATP7B genes were expressed at higher levels in platinum-resistant cells compared with sensitive cells; however, only differences in ATP7B reached statistical significance. ATP7A gene silencing had no significant effect on the sensitivity of resistant cells to cisplatin, but ATP7B silencing resulted in 2.5-fold reduction of cisplatin IC(50) levels and increased DNA adduct formation in cisplatin-resistant cells (A2780-CP20 and RMG2). Cisplatin was found to bind to the NH(2)-terminal copper-binding domain of ATP7B, which might be a contributing factor to cisplatin resistance. For in vivo therapy experiments, ATP7B siRNA was incorporated into DOPC and was highly effective in reducing tumor growth in combination with cisplatin (70-88% reduction in both models compared with controls). This reduction in tumor growth was accompanied by reduced proliferation, increased tumor cell apoptosis, and reduced angiogenesis. CONCLUSION: These data provide a new understanding of cisplatin resistance in cancer cells and may have implications for therapeutic reversal of drug resistance.
Resumo:
Tuberous Sclerosis Complex (TSC) is an autosomal dominant tumor suppressor disorder characterized by hamartomas, or benign growths, in various organ systems. Inactivating mutations in either the TSC1 or the TSC2 gene cause most cases of TSC. Recently, the use of ovarian specific conditional knock-out mouse models has demonstrated a crucial role of the TSC genes in ovarian function. Mice with complete deletion of Tsc1 or Tsc2 showed accelerated ovarian follicle activation and subsequent premature follicular depletion, consistent with the human condition premature ovarian failure (POF). POF is defined in women as the cessation of menses before the age of 40 and elevated levels of follicle stimulating hormone (FSH). The prevalence of POF is estimated to be 1%, affecting a substantial number of women in the general population. Nonetheless, the etiology of most cases of POF remains unknown. Based on the mouse model results, we hypothesized that the human TSC1 and TSC2 genes are likely to be crucial for ovarian development and function. Moreover, since women with TSC already have one inactivated TSC gene, we further hypothesized that they may show a higher prevalence of POF. To test this hypothesis, we surveyed 1000 women with TSC belonging to the Tuberous Sclerosis Alliance, a national support organization. 182 questionnaires were analyzed for information on menstrual and reproductive function, as well as TSC. This self-reported data revealed 8 women (4.4%) with possible POF, as determined by menstrual history report and additional supportive data. This prevalence is much higher than 1% in the general population. Data from all women suggested other reproductive pathology associated with TSC such as a high rate of miscarriage (41.2%) and menstrual irregularity of any kind (31.2%). These results establish a previously unappreciated effect of TSC on women’s reproductive health. Moreover, these data suggest that perturbations in the cellular pathways regulated by the TSC genes may play an important role in reproductive function.
Resumo:
Among the gynecologic malignancies, epithelial ovarian tumors are the leading cause of death. For the past few decades, the only treatment has involved surgical resection of the tumor and/or general chemotherapies. In an attempt to improve treatment options, we have shown that several oncogenes that are overexpressed in ovarian cancer, PI3K, PKCiota, and cyclin E, all of which have been shown to lead to a poor prognosis and decreased survival, converge into a single pathway that could potentially be targeted therapeutically. Because of the ability of either PKCiota or cyclin E overexpression to independently induce anchorage-independent growth, a hallmark of cancer, we hypothesized that targeting PKCiota expression in ovarian cancer cells could induce a reversion of the transformed phenotype through down regulation of cyclin E. To test this hypothesis, we first established a correlation between PKCiota and cyclin E in a panel of 20 ovarian cancer cell lines. To show that PKCiota is upstream of cyclin E, PKCiota was stably knocked down using RNAi in IGROV cells (epithelial ovarian cancer cell line of serous histology). The silencing of PKCiota resulted in decreased expression of cell cycle drivers, such as cyclin D1/E and CDK2/4, and an increase in p27. These alteration in the regulators of the cell cycle resulted in a decrease in both proliferation and anchorage-independent growth, which was specifically through cyclin E, as determined by a rescue experiment. We also found that the mechanism of cyclin E regulation by PKCiota was at the level of degradation rather than transcription. Using two inhibitors to PI3K, we found that both the active form of PKCiota and total cyclin E levels decreased, implying that the PKCiota/cyclin E pathway is downstream from PI3K. In conclusion, we have identified a novel pathway in epithelial ovarian tumorigenesis (PI3K à PKCiota à Cyclin E à anchorage-independent growth), which could potentially be targeted therapeutically.