909 resultados para Oscillation, functional ordinary differential equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper discusses the frequency domain based solution for a certain class of wave equations such as: a second order partial differential equation in one variable with constant and varying coefficients (Cantilever beam) and a coupled second order partial differential equation in two variables with constant and varying coefficients (Timoshenko beam). The exact solution of the Cantilever beam with uniform and varying cross-section and the Timoshenko beam with uniform cross-section is available. However, the exact solution for Timoshenko beam with varying cross-section is not available. Laplace spectral methods are used to solve these problems exactly in frequency domain. The numerical solution in frequency domain is done by discretisation in space by approximating the unknown function using spectral functions like Chebyshev polynomials, Legendre polynomials and also Normal polynomials. Different numerical methods such as Galerkin Method, Petrov- Galerkin method, Method of moments and Collocation method or the Pseudo-spectral method in frequency domain are studied and compared with the available exact solution. An approximate solution is also obtained for the Timoshenko beam with varying cross-section using Laplace Spectral Element Method (LSEM). The group speeds are computed exactly for the Cantilever beam and Timoshenko beam with uniform cross-section and is compared with the group speeds obtained numerically. The shear mode and the bending modes of the Timoshenko beam with uniform cross-section are separated numerically by applying a modulated pulse as the shear force and the corresponding group speeds for varying taper parameter in are obtained numerically by varying the frequency of the input pulse. An approximate expression for calculating group speeds corresponding to the shear mode and the bending mode, and also the cut-off frequency is obtained. Finally, we show that the cut-off frequency disappears for large in, for epsilon > 0 and increases for large in, for epsilon < 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the free vibration of a rotating Euler-Bernoulli beam is studied using an inverse problem approach. We assume a polynomial mode shape function for a particular mode, which satisfies all the four boundary conditions of a rotating beam, along with the internal nodes. Using this assumed mode shape function, we determine the linear mass and fifth order stiffness variations of the beam which are typical of helicopter blades. Thus, it is found that an infinite number of such beams exist whose fourth order governing differential equation possess a closed form solution for certain polynomial variations of the mass and stiffness, for both cantilever and pinned-free boundary conditions corresponding to hingeless and articulated rotors, respectively. A detailed study is conducted for the first, second and third modes of a rotating cantilever beam and the first and second elastic modes of a rotating pinned-free beam, and on how to pre-select the internal nodes such that the closed-form solutions exist for these cases. The derived results can be used as benchmark solutions for the validation of rotating beam numerical methods and may also guide nodal tailoring. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quantum statistical mechanical propagator for a harmonic oscillator with a time-dependent force constant, m omega(2)(t), has been investigated in the past and was found to have only a formal solution in terms of the solutions of certain ordinary differential equations. Such path integrals are frequently encountered in semiclassical path integral evaluations and having exact analytical expressions for such path integrals is of great interest. In a previous work, we had obtained the exact propagator for motion in an arbitrary time-dependent harmonic potential in the overdamped limit of friction using phase space path integrals in the context of Levy flights - a result that can be easily extended to Brownian motion. In this paper, we make a connection between the overdamped Brownian motion and the imaginary time propagator of quantum mechanics and thereby get yet another way to evaluate the latter exactly. We find that explicit analytic solution for the quantum statistical mechanical propagator can be written when the time-dependent force constant has the form omega(2)(t) = lambda(2)(t) - d lambda(t)/dt where lambda(t) is any arbitrary function of t and use it to evaluate path integrals which have not been evaluated previously. We also employ this method to arrive at a formal solution of the propagator for both Levy flights and Brownian subjected to a time-dependent harmonic potential in the underdamped limit of friction. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a need to use probability distributions with power-law decaying tails to describe the large variations exhibited by some of the physical phenomena. The Weierstrass Random Walk (WRW) shows promise for modeling such phenomena. The theory of anomalous diffusion is now well established. It has found number of applications in Physics, Chemistry and Biology. However, its applications are limited in structural mechanics in general, and structural engineering in particular. The aim of this paper is to present some mathematical preliminaries related to WRW that would help in possible applications. In the limiting case, it represents a diffusion process whose evolution is governed by a fractional partial differential equation. Three applications of superdiffusion processes in mechanics, illustrating their effectiveness in handling large variations, are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie dagger-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Ito formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus. (C) 2016 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The constitutive relations and kinematic assumptions on the composite beam with shape memory alloy (SMA) arbitrarily embedded are discussed and the results related to the different kinematic assumptions are compared. As the approach of mechanics of materials is to study the composite beam with the SMA layer embedded, the kinematic assumption is vital. In this paper, we systematically study the kinematic assumptions influence on the composite beam deflection and vibration characteristics. Based on the different kinematic assumptions, the equations of equilibrium/motion are different. Here three widely used kinematic assumptions are presented and the equations of equilibrium/motion are derived accordingly. As the three kinematic assumptions change from the simple to the complex one, the governing equations evolve from the linear to the nonlinear ones. For the nonlinear equations of equilibrium, the numerical solution is obtained by using Galerkin discretization method and Newton-Rhapson iteration method. The analysis on the numerical difficulty of using Galerkin method on the post-buckling analysis is presented. For the post-buckling analysis, finite element method is applied to avoid the difficulty due to the singularity occurred in Galerkin method. The natural frequencies of the composite beam with the nonlinear governing equation, which are obtained by directly linearizing the equations and locally linearizing the equations around each equilibrium, are compared. The influences of the SMA layer thickness and the shift from neutral axis on the deflection, buckling and post-buckling are also investigated. This paper presents a very general way to treat thermo-mechanical properties of the composite beam with SMA arbitrarily embedded. The governing equations for each kinematic assumption consist of a third order and a fourth order differential equation with a total of seven boundary conditions. Some previous studies on the SMA layer either ignore the thermal constraint effect or implicitly assume that the SMA is symmetrically embedded. The composite beam with the SMA layer asymmetrically embedded is studied here, in which symmetric embedding is a special case. Based on the different kinematic assumptions, the results are different depending on the deflection magnitude because of the nonlinear hardening effect due to the (large) deflection. And this difference is systematically compared for both the deflection and the natural frequencies. For simple kinematic assumption, the governing equations are linear and analytical solution is available. But as the deflection increases to the large magnitude, the simple kinematic assumption does not really reflect the structural deflection and the complex one must be used. During the systematic comparison of computational results due to the different kinematic assumptions, the application range of the simple kinematic assumption is also evaluated. Besides the equilibrium study of the composite laminate with SMA embedded, the buckling, post-buckling, free and forced vibrations of the composite beam with the different configurations are also studied and compared.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reynolds averaged Navier-Stokes model performances in the stagnation and wake regions for turbulent flows with relatively large Lagrangian length scales (generally larger than the scale of geometrical features) approaching small cylinders (both square and circular) is explored. The effective cylinder (or wire) diameter based Reynolds number, ReW ≤ 2.5 × 103. The following turbulence models are considered: a mixing-length; standard Spalart and Allmaras (SA) and streamline curvature (and rotation) corrected SA (SARC); Secundov's νt-92; Secundov et al.'s two equation νt-L; Wolfshtein's k-l model; the Explicit Algebraic Stress Model (EASM) of Abid et al.; the cubic model of Craft et al.; various linear k-ε models including those with wall distance based damping functions; Menter SST, k-ω and Spalding's LVEL model. The use of differential equation distance functions (Poisson and Hamilton-Jacobi equation based) for palliative turbulence modeling purposes is explored. The performance of SA with these distance functions is also considered in the sharp convex geometry region of an airfoil trailing edge. For the cylinder, with ReW ≈ 2.5 × 103 the mixing length and k-l models give strong turbulence production in the wake region. However, in agreement with eddy viscosity estimates, the LVEL and Secundov νt-92 models show relatively little cylinder influence on turbulence. On the other hand, two equation models (as does the one equation SA) suggest the cylinder gives a strong turbulence deficit in the wake region. Also, for SA, an order or magnitude cylinder diameter decrease from ReW = 2500 to 250 surprisingly strengthens the cylinder's disruptive influence. Importantly, results for ReW ≪ 250 are virtually identical to those for ReW = 250 i.e. no matter how small the cylinder/wire its influence does not, as it should, vanish. Similar tests for the Launder-Sharma k-ε, Menter SST and k-ω show, in accordance with physical reality, the cylinder's influence diminishing albeit slowly with size. Results suggest distance functions palliate the SA model's erroneous trait and improve its predictive performance in wire wake regions. Also, results suggest that, along the stagnation line, such functions improve the SA, mixing length, k-l and LVEL results. For the airfoil, with SA, the larger Poisson distance function increases the wake region turbulence levels by just under 5%. © 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brief review is presented of statistical approaches on microdamage evolution. An experimental study of statistical microdamage evolution in two ductile materials under dynamic loading is carried out. The observation indicates that there are large differences in size and distribution of microvoids between these two materials. With this phenomenon in mind, kinetic equations governing the nucleation and growth of microvoids in nonlinear rate-dependent materials are combined with the balance law of void number to establish statistical differential equations that describe the evolution of microvoids' number density. The theoretical solution provides a reasonable explanation of the experimentally observed phenomenon. The effects of stochastic fluctuation which is influenced by the inhomogeneous microscopic structure of materials are subsequently examined (i.e. stochastic growth model). Based on the stochastic differential equation, a Fokker-Planck equation which governs the evolution of the transition probability is derived. The analytical solution for the transition probability is then obtained and the effects of stochastic fluctuation is discussed. The statistical and stochastic analyses may provide effective approaches to reveal the physics of damage evolution and dynamic failure process in ductile materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A more generalized model of a beam resting on a tensionless Reissner foundation is presented. Compared with the Winkler foundation model, the Reissner foundation model is a much improved one. In the Winkler foundation model, there is no shear stress inside the foundation layer and the foundation is assumed to consist of closely spaced, independent springs. The presence of shear stress inside Reissner foundation makes the springs no longer independent and the foundation to deform as a whole. Mathematically, the governing equation of a beam on Reissner foundation is sixth order differential equation compared with fourth order of Winkler one. Because of this order change of the governing equation, new boundary conditions are needed and related discussion is presented. The presence of the shear stress inside the tensionless Reissner foundation together with the unknown feature of contact area/length makes the problem much more difficult than that of Winkler foundation. In the model presented here, the effects of beam dimension, gap distance, loading asymmetry and foundation shear stress on the contact length are all incorporated and studied. As the beam length increases, the results of a finite beam with zero gap distance converge asymptotically to those obtained by the previous model for an infinitely long beam. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the closed form of solution to the stochastic differential equation for a fatigue crack evolution system is derived. and the relationship between metal fatigue damage and crack stochastic behaviour is investigated. It is found that the damage extent of metals is independent of crack stochastic behaviour ii the stochastic deviation of the crack growth rate is directly proportional to its mean value. The evolution of stochastic deviation of metal fatigue damage in the stage close to the transition point between short and long crack regimes is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<正> 1.系统设计 利用高速计算机,进行微分方程公式的推导是数学研究工作的一个新的尝试,它将影响今后微分方程研究工作的现代化。 微分方程程序系统(Differential Equation Program System,简称DEPS)的主要用途是

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of lifetime measurement in a flowing medium with phase fluorometry is investigated theoretically. A 3-D time dependent partial differential equation of the number density of atoms (or molecules) in the upper level of the fluorescence transition is solved analytically, taking flow, diffusion, optical excitation, decay, Doppler shift, and thickness of the excitation light sheet into account. An analytical expression of the intensity of the fluorescence signal in the flowing medium is deduced. Conditions are given, in which the principle of lifetime measurement with phase fluorometry in the static sample cell can be used in a flowing medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is aimed at establishing a statistical theory of rotational and vibrational excitation of polyatomic molecules by an intense IR laser. Starting from the Wigner function of quantum statistical mechanics, we treat the rotational motion in the classical approximation; the vibrational modes are classified into active ones which are coupled directly with the laser and the background modes which are not coupled with the laser. The reduced Wigner function, i.e., the Wigner function integrated over all background coordinates should satisfy an integro-differential equation. We introduce the idea of ``viscous damping'' to handle the interaction between the active modes and the background. The damping coefficient can be calculated with the aid of the well-known Schwartz–Slawsky–Herzfeld theory. The resulting equation is solved by the method of moment equations. There is only one adjustable parameter in our scheme; it is introduced due to the lack of precise knowledge about the molecular potential. The theory developed in this paper explains satisfactorily the recent absorption experiments of SF6 irradiated by a short pulse CO2 laser, which are in sharp contradiction with the prevailing quasi-continuum theory. We also refined the density of energy levels which is responsible for the muliphoton excitation of polyatomic molecules.