995 resultados para North Atlantic westery airflow
Resumo:
Data on composition of aerosols are considered. Investigations include electron microscopy, grain size, mineralogical and chemical analyses. Samples of aerosols were collected Cruise 37 of R/V Akademik Mstislav Keldysh along a transatlantic section along 40°-50°N. Variability of concentrations and composition of aerosols with distance from continents is shown: concentrations of aerosols decrease by factor of ten and more. Significant portion of mineral components in aerosols collected over the continent is replaced by organic matter due to mechanical differentiation during transportation. Such anthropogenic components as soot, ash, and combustion spheres were detected in all samples. North African dust was found in one sample in the western part of the section.
Resumo:
This paper reports the concentrations and within-class distributions of long-chain alkenones and alkyl alkenoates in the surface waters (0-50 m) of the eastern North Atlantic, and correlates their abundance and distribution with those of source organisms and with water temperature and other environmental variables. We collected these samples of >0.8 µm particulate material from the euphotic zone along the JGOFS 20°W longitude transect, from 61°N to 24°N, during seven cruises of the UK-JGOFS Biogeochemical Ocean Flux Study (BOFS) in 1989-1991; the biogeographical range of our 53 samples extends from the cold (<10°C), nutrient-rich and highly productive subarctic waters of the Iceland Basin to the warm (>25°C) oligotrophic subtropical waters off Africa. Surface water concentrations of total alkenone and alkenoates ranged from <50 ng/l in oligotrophic waters below 40°N to 2000-4500 ng/l in high latitude E. huxleyi blooms, and were well correlated with E. huxleyi cell densities, supporting the assumption that E. huxleyi is the predominant source of these compounds in the present day North Atlantic. The within-class distribution of the C37 and C38 alkenones and C36 alkenoates varied strongly as a function of temperature, and was largely unaffected by nutrient concentration, bloom status and other surface water properties. The biosynthetic response of the source organisms to growth temperature differed between the cold (<16°C) waters above 47°N and the warmer waters to the south. In cold (<16°C) waters above 47°N, the relative amounts of alkenoates and C38 alkenones synthesized was a strong function of growth temperature, while the unsaturation ratio of the alkenones (C37 and C38) was uncorrelated with temperature. Conversely, in warm (>16°C) waters below 47°N, the relative proportions of alkenoates and alkenones synthesized remained constant with increasing temperature while the unsaturation ratios of the C37 and C38 methyl alkenones (Uk37 and Uk38Me, respectively) increased linearly. The fitted regressions of Uk37 and Uk38Me versus temperature for waters >16°C were both highly significant (r**2 > 0.96) and had identical slopes (0.057) that were 50% higher than the slope (0.034) of the temperature calibration of Uk37 reported by Prahl and Wakeham (1987; doi:10.1038/330367a0) over the same temperature range. These observations suggest either a physiological adjustment in biochemical response to growth temperature above a 16-17°C threshold and/or variation between different E. huxleyi strains and/or related species inhabiting the cold and warm water regions of the eastern North Atlantic. Using our North Atlantic data set, we have produced multivariate temperature calibrations incorporating all major features of the alkenone and alkenoate data set. Predicted temperatures using multivariate calibrations are largely unbiased, with a standard error of approximately ±1°C over the entire data range. In contrast, simpler calibration models cannot adequately incorporate regional diversity and nonlinear trends with temperature. Our results indicate that calibrations based upon single variables, such as Uk37, can be strongly biased by unknown systematic errors arising from natural variability in the biosynthetic response of the source organisms to growth temperature. Multivariate temperature calibration can be expected to give more precise estimates of Integrated Production Temperatures (IPT) in the sedimentary record over a wider range of paleoenvironmental conditions, when derived using a calibration data set incorporating a similar range of natural variability in biosynthetic response.
Resumo:
New Sr-Nd-Pb-Hf data require the existence of at least four mantle components in the genesis of basalts from the the North Atlantic Igneous Province (NAIP): (1) one (or more likely a small range of) enriched component(s) within the Iceland plume, (2) a depleted component within the Iceland plume (distinct from the shallow N-MORB source), (3) a depleted sheath surrounding the plume and (4) shallow N-MORB source mantle. These components have been available since the major phase of igneous activity associated with plume head impact during Paleogene times. In Hf-Nd isotope space, samples from Iceland, DSDP Leg 49 (Sites 407, 408 and 409), ODP Legs 152 and 163 (southeast Greenland margin), the Reykjanes Ridge, Kolbeinsey Ridge and DSDP Leg 38 (Site 348) define fields that are oblique to the main ocean island basalt array and extend toward a component with higher 176Hf/177Hf than the N-MORB source available prior to arrival of the plume, as indicated by the compositions of Cretaceous basalts from Goban Spur (~95 Ma). Aside from Goban Spur, only basalts from Hatton Bank on the oceanward side of the Rockall Plateau (DSDP Leg 81) lie consistently within the field of N-MORB, which indicates that the compositional influence of the plume did not reach this far south and east ~55 Ma ago. Thus, Hf-Nd isotope systematics are consistent with previous studies which indicate that shallow MORB-source mantle does not represent the depleted component within the Iceland plume (Thirlwall, J. Geol. Soc. London 152 (1995) 991-996; Hards et al., J. Geol. Soc. London 152 (1995) 1003-1009; Fitton et al., 1997 doi:10.1016/S0012-821X(97)00170-2). They also indicate that the depleted component is a long-lived and intrinsic feature of the Iceland plume, generated during an ancient melting event in which a mineral (such as garnet) with a high Lu/Hf was a residual phase. Collectively, these data suggest a model for the Iceland plume in which a heterogeneous core, derived from the lower mantle, consists of 'enriched' streaks or blobs dispersed in a more depleted matrix. A distinguishing feature of both the enriched and depleted components is high Nb/Y for a given Zr/Y (i.e. positive DeltaNb), but the enriched component has higher Sr and Pb isotope ratios, combined with lower epsilon-Nd and epsilon-Hf. This heterogeneous core is surrounded by a sheath of depleted material, similar to the depleted component of the Iceland plume in its epsilon-Nd and epsilon-Hf, but with lower 87Sr/86Sr, 208Pb/204Pb and negative DeltaNb; this material was probably entrained from near the 670 km discontinuity when the plume stalled at the boundary between the upper and lower mantle. The plume sheath displaced more normal MORB asthenosphere (distinguished by its lower epsilon-Hf for a given epsilon-Nd or Zr/Nb ratio), which existed in the North Atlantic prior to plume impact. Preliminary data on MORBs from near the Azores plume suggest that much of the North Atlantic may be 'polluted' not only by enriched plume material but also by depleted material similar to the Iceland plume sheath. If this hypothesis is correct, it may provide a general explanation for some of the compositional diversity and variations in inferred depth of melting (Klein and Langmuir, 1987 doi:10.1029/JB092iB08p08089) along the MAR in the North Atlantic.
Resumo:
Abundance variations of six Pliocene species of discoasters have been analyzed over the time interval from 1.89 to 2.95 Ma at five contrasting sites in the North Atlantic: Deep Sea Drilling Project Sites 552 (56°N) and 607 (41°N) and Ocean Drilling Program 658 (20°N), 659 (18°N), and 662 (1°S). A sampling interval equivalent to approximately 3 k.y. was used. Total Discoaster abundance showed a reduction with increasing latitude and from the effects of upwelling. This phenomenon is most obvious in Discoaster brouweri, the only species that survived over the entire time interval studied. Prior to 2.38 Ma, Discoaster pentaradiatus and Discoaster surculus are important components of the Discoaster assemblage: Discoaster pentaradiatus increases slightly with latitude up to 41°N, and its abundance relative to D. brouweri increases up to 56°N; D. surculus increases in abundance with latitude and with upwelling conditions relative to both D. brouweri and D. pentaradiatus and is dominant to the latter species at upwelling Site 658 and at the highest latitude sites. Discoaster asymmetricus and Discoaster tamalis appear to increase in abundance with latitude relative to D. brouweri. Many of the abundance changes observed appear to be connected with the initiation of glaciation in the North Atlantic at 2.4 Ma. The long-term trend of decreasing Discoaster abundance probably reflects the fall of sea-surface temperatures. This trend of cooling is overprinted by short-term variations that are probably associated with orbital forcing. Evidence for the astronomical elements of eccentricity and obliquity periodicities were found at all sites; however, only at Sites 607, 659, and 662 were precessional periodicities detected. Furthermore, only at Site 659 was precession found to be dominant to obliquity. Abundance peaks of individual species were found to cross-correlate between sites. The distinct abundance fluctuations observed especially in the tropics suggest that temperature is not the only factor responsible for this variation. This study reveals for the first time the importance of productivity pressure on the suppression of Discoaster abundance.
Resumo:
Benthic foraminiferal assemblages of distinctive taxonomic composition occur at the top of benthic fossil-free black shales which correspond to the anoxic event at the Cenomanian/Turonian boundary in the North Atlantic abyssal DSDP/ODP sites 386, 398, 603 and 641. These assemblages consist of minute, thin-walled agglutinated foraminifera with low specific diversity of 2 to 4 species, variable abundance and dominance of few taxa (Haplophragmoides, Rhizammina and Glomospira). The species are inferred to be opportunistic, able to survive in low-oxygen environments and to be pioneers recolonizing the seafloor after cessation of bottom-water anoxia. Most species are characterized by test morphologies with high surface/volume ratios and single-layered wall structures, with loosely agglutinated grains, and small amounts of organic cement for agglutination. These features are best observed in material from ODP Hole 641A which has exceptional foraminiferai preservation because of its shallow burial depth. The successive appearance of benthic foraminifera after the anoxic event is probably controlled by the continuous reoccurrence of more oxygenated bottom- and interstitial-water conditions. With the final development of oxic bottom-water conditions in the Turonian, a rapid radiation of deep-water agglutinated foraminifera occurred in the North Atlantic.
Resumo:
Here we present a new, pan-North-Atlantic compilation of data on key mesozooplankton species, including the most important copepod, Calanus finmarchicus. Distributional data of eight representative zooplankton taxa, from recent (2000-2009) Continuous Plankton Recorder data, are presented, along with basin-scale data of the phytoplankton colour index. Then we present a compilation of data on C. finmarchicus, including observations of abundance, demography, egg production and female size, with accompanying data on temperature and chlorophyll. . This is a contribution by Canadian, European and US scientists and their institutions.