981 resultados para Normal colonic mucosa
Resumo:
The processes by which humans and other primates learn to recognize objects have been the subject of many models. Processes such as learning, categorization, attention, memory search, expectation, and novelty detection work together at different stages to realize object recognition. In this article, Gail Carpenter and Stephen Grossberg describe one such model class (Adaptive Resonance Theory, ART) and discuss how its structure and function might relate to known neurological learning and memory processes, such as how inferotemporal cortex can recognize both specialized and abstract information, and how medial temporal amnesia may be caused by lesions in the hippocampal formation. The model also suggests how hippocampal and inferotemporal processing may be linked during recognition learning.
Resumo:
The Tribbles family of genes consist of three members; TRIB1, TRIB2 and TRIB3. Trib1 and Trib2 have been identified as oncogenes that can induce AML in mice. However little is known about how the expressions of the Tribbles family genes are controlled in the cell during haematopoiesis or leukaemogenesis. To investigate the Tribbles genes in leukaemia a bioinformatics approach was used. TRIB2 expression was found to be elevated in T-ALL and ALL with t(1;19). TRIB1 was found not to be significantly elevated in any leukaemic subtypes. Analyses of the TRIB1 and TRIB2 gene signatures in both leukaemic and normal haematopoietic cells identified pathways and transcription factors associated with these signatures. Pathways enriched for the TRIB1 signature included TLR signalling pathways and NF-κB pathways. Transcription factors enriched for this signature include C/EBP and SRF. Enriched for the TRIB2 signature includes T cell signalling pathways and Notch signalling pathways. Transcription factors enriched for this signature include E2F and ETS. Further investigation in vitro confirmed the finding that E2F1 was as a potential regulator of TRIB2 expression. E2F1 is able to directly bind to the TRIB2 promoter region and induce TRIB2 expression. C/EBPα p42 was found to inhibit E2F1 and the p30 isoform was found to cooperate with E2F1 induced activation of the TRIB2 promoter. Indicating the potential presence of a regulatory loop involved in the regulation of the TRIB2 gene. In conclusion we have investigated the Tribbles gene signatures in both normal haematopoietic and leukaemic cells. This has led to the identification of a number of pathways and transcription factors associated with these genes. We have also identified a family of transcription factors directly responsible for the regulation of TRIB2 expression. This regulatory pathway has the potential to be targeted in the treatment of leukaemia with a high TRIB2 signature.
Resumo:
The overall objective of this thesis was to gain further insight into the mechanisms underlying commensal microbial influences on intestinal ion transport. In this regard, I examined the impact of commensal host-microbe interactions on colonic secretomotor function in mouse. I first examined the influence of two different probiotic (microorganisms which, when given in adequate amounts, can confer health benefits upon the host) strains, Bifidobacterium infantis 35624 and L. salivarius UCC118 on active colonic ion transport in the mouse, using the Ussing Chamber. I found that both probiotics appear to have converging effects on ion transport at a functional level. However, L. salivarius UCC118 may preferentially inhibit neurally-evoked ion transport. Next I examined the impact of the host microbiota itself on both baseline and stimulated colonic secretomotor function as well as probiotic induced changes in ion transport. I provide further evidence that the microbiota is capable of mediating alterations in colonic ion transport, and specifically suggests that it can influence cAMP-mediated responses. Finally, it has been well documented that many probiotics elicit their effects via secreted bioactives, therefore, I studied the effects of microbially produced GABA, contained in supernatants from the commensal microbe Lactobacillus brevis DPC6108, on colonic secretomotor function. In conclusion, I believe that commensal microbes have an important and strain specific functional influence on colonic ion transport and secretomotor function and these effects can be mediated via extracellular bioactives. Moreover, I believe that functional ex-vivo studies such as those carried out in this thesis have a critical role to play in our future understanding of host-microbe interactions in the gut.
Resumo:
BACKGROUND/AIMS: The intestinal immune system faces large amounts of antigens, and its regulation is tightly balanced by cytokines. In this study, the effect of intestinal flow diversion on spontaneous secretion of interleukin (IL)-4 and interferon (IFN)- gamma was analysed. METHODS: Eight patients (two with Crohn's disease, four with ulcerative colitis, and two with previous colon cancer) carrying a double lumen small bowel stoma after a total colectomy procedure were included in the study. For each patient, eight biopsy samples were taken endoscopically from both the diverted and non-diverted part of the small bowel. Intraepithelial lymphocytes (IELs) and lamina propria lymphocytes (LPLs) were isolated separately and assayed for numbers of cells spontaneously secreting IL-4 and/or IFN-gamma by an ELISPOT technique. RESULTS: Compared with the non-diverted mucosa, a significant decrease in the number of spontaneously IFN-gamma secreting CD3 lymphocytes was observed in the diverted small bowel mucosa among both IELs (p = 0.008) and LPLs (p = 0.007). The same results, although less significant, were obtained for IL-4, especially in LPLs (p = 0.01). CONCLUSION: The intestinal content influences the spontaneous secretion of IFN-gamma and IL-4 by intestinal lymphocytes. These results could help to elucidate the anti-inflammatory role of split ileostomy in patients suffering from inflammatory bowel diseases.
Resumo:
BACKGROUND AND AIMS: Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) has been shown to act as a negative regulator of T cell function and has been implicated in the regulation of T helper 1 (Th1)/Th2 development and the function of regulatory T cells. Tests were carried out to determine whether anti-CTLA-4 treatment would alter the polarisation of naive T cells in vivo. METHODS: Mice were treated with anti-CTLA-4 monoclonal antibody (mAb) (UC10-4F10) at the time of immunisation or colonic instillation of trinitrobenzene sulfonic acid (TNBS). The cytokines produced by lymph node cells after in vitro antigenic stimulation and the role of indoleamine 2,3 dioxygenase (IDO) and of interleukin-10 (IL-10) were tested, and the survival of mice was monitored. RESULTS: Injection of anti-CTLA-4 mAb in mice during priming induced the development of adaptive CD4(+) regulatory T cells which expressed high levels of ICOS (inducible co-stimulator), secreted IL-4 and IL-10. This treatment inhibited Th1 memory responses in vivo and repressed experimental intestinal inflammation. The anti-CTLA-4-induced amelioration of disease correlated with IDO expression and infiltration of ICOS(high) Foxp3(+) T cells in the intestine, suggesting that anti-CTLA-4 acted indirectly through the development of regulatory T cells producing IL-10 and inducing IDO. CONCLUSIONS: These observations emphasise the synergy between IL-10 and IDO as anti-inflammatory agents and highlight anti-CTLA-4 treatment as a potential novel immunotherapeutic approach for inducing adaptive regulatory T cells.
Resumo:
info:eu-repo/semantics/published
Resumo:
BACKGROUND: Inflammatory bowel disease (IBD) is hypothesized to result from stimulation of immune responses against resident intestinal bacteria within a genetically susceptible host. Mast cells may play a critical role in IBD pathogenesis, since they are typically located just beneath the intestinal mucosal barrier and can be activated by bacterial antigens. METHODOLOGY/PRINCIPAL FINDINGS: This study investigated effects of mast cells on inflammation and associated neoplasia in IBD-susceptible interleukin (IL)-10-deficient mice with and without mast cells. IL-10-deficient mast cells produced more pro-inflammatory cytokines in vitro both constitutively and when triggered, compared with wild type mast cells. However despite this enhanced in vitro response, mast cell-sufficient Il10(-/-) mice actually had decreased cecal expression of tumor necrosis factor (TNF) and interferon (IFN)-gamma mRNA, suggesting that mast cells regulate inflammation in vivo. Mast cell deficiency predisposed Il10(-/-) mice to the development of spontaneous colitis and resulted in increased intestinal permeability in vivo that preceded the development of colon inflammation. However, mast cell deficiency did not affect the severity of IBD triggered by non-steroidal anti-inflammatory agents (NSAID) exposure or helicobacter infection that also affect intestinal permeability. CONCLUSIONS/SIGNIFICANCE: Mast cells thus appear to have a primarily protective role within the colonic microenvironment by enhancing the efficacy of the mucosal barrier. In addition, although mast cells were previously implicated in progression of sporadic colon cancers, mast cells did not affect the incidence or severity of colonic neoplasia in this inflammation-associated model.
Resumo:
BACKGROUND: Small laboratory fish share many anatomical and histological characteristics with other vertebrates, yet can be maintained in large numbers at low cost for lifetime studies. Here we characterize biomarkers associated with normal aging in the Japanese medaka (Oryzias latipes), a species that has been widely used in toxicology studies and has potential utility as a model organism for experimental aging research. PRINCIPAL FINDINGS: The median lifespan of medaka was approximately 22 months under laboratory conditions. We performed quantitative histological analysis of tissues from age-grouped individuals representing young adults (6 months old), mature adults (16 months old), and adults that had survived beyond the median lifespan (24 months). Livers of 24-month old individuals showed extensive morphologic changes, including spongiosis hepatis, steatosis, ballooning degeneration, inflammation, and nuclear pyknosis. There were also phagolysosomes, vacuoles, and residual bodies in parenchymal cells and congestion of sinusoidal vessels. Livers of aged individuals were characterized by increases in lipofuscin deposits and in the number of TUNEL-positive apoptotic cells. Some of these degenerative characteristics were seen, to a lesser extent, in the livers of 16-month old individuals, but not in 6-month old individuals. The basal layer of the dermis showed an age-dependent decline in the number of dividing cells and an increase in senescence-associated β-galactosidase. The hearts of aged individuals were characterized by fibrosis and lipofuscin deposition. There was also a loss of pigmented cells from the retinal epithelium. By contrast, age-associated changes were not apparent in skeletal muscle, the ocular lens, or the brain. SIGNIFICANCE: The results provide a set of markers that can be used to trace the process of normal tissue aging in medaka and to evaluate the effect of environmental stressors.
Resumo:
BACKGROUND: The clinical syndrome of heart failure (HF) is characterized by an impaired cardiac beta-adrenergic receptor (betaAR) system, which is critical in the regulation of myocardial function. Expression of the betaAR kinase (betaARK1), which phosphorylates and uncouples betaARs, is elevated in human HF; this likely contributes to the abnormal betaAR responsiveness that occurs with beta-agonist administration. We previously showed that transgenic mice with increased myocardial betaARK1 expression had impaired cardiac function in vivo and that inhibiting endogenous betaARK1 activity in the heart led to enhanced myocardial function. METHODS AND RESULTS: We created hybrid transgenic mice with cardiac-specific concomitant overexpression of both betaARK1 and an inhibitor of betaARK1 activity to study the feasibility and functional consequences of the inhibition of elevated betaARK1 activity similar to that present in human HF. Transgenic mice with myocardial overexpression of betaARK1 (3 to 5-fold) have a blunted in vivo contractile response to isoproterenol when compared with non-transgenic control mice. In the hybrid transgenic mice, although myocardial betaARK1 levels remained elevated due to transgene expression, in vitro betaARK1 activity returned to control levels and the percentage of betaARs in the high-affinity state increased to normal wild-type levels. Furthermore, the in vivo left ventricular contractile response to betaAR stimulation was restored to normal in the hybrid double-transgenic mice. CONCLUSIONS: Novel hybrid transgenic mice can be created with concomitant cardiac-specific overexpression of 2 independent transgenes with opposing actions. Elevated myocardial betaARK1 in transgenic mouse hearts (to levels seen in human HF) can be inhibited in vivo by a peptide that can prevent agonist-stimulated desensitization of cardiac betaARs. This may represent a novel strategy to improve myocardial function in the setting of compromised heart function.
Resumo:
Understanding immune tolerance mechanisms is a major goal of immunology research, but mechanistic studies have generally required the use of mouse models carrying untargeted or targeted antigen receptor transgenes, which distort lymphocyte development and therefore preclude analysis of a truly normal immune system. Here we demonstrate an advance in in vivo analysis of immune tolerance that overcomes these shortcomings. We show that custom superantigens generated by single chain antibody technology permit the study of tolerance in a normal, polyclonal immune system. In the present study we generated a membrane-tethered anti-Igkappa-reactive single chain antibody chimeric gene and expressed it as a transgene in mice. B cell tolerance was directly characterized in the transgenic mice and in radiation bone marrow chimeras in which ligand-bearing mice served as recipients of nontransgenic cells. We find that the ubiquitously expressed, Igkappa-reactive ligand induces efficient B cell tolerance primarily or exclusively by receptor editing. We also demonstrate the unique advantages of our model in the genetic and cellular analysis of immune tolerance.
Resumo:
Brain tumors are typically resistant to conventional chemotherapeutics, most of which initiate apoptosis upstream of mitochondrial cytochrome c release. In this study, we demonstrate that directly activating apoptosis downstream of the mitochondria, with cytosolic cytochrome c, kills brain tumor cells but not normal brain tissue. Specifically, cytosolic cytochrome c is sufficient to induce apoptosis in glioblastoma and medulloblastoma cell lines. In contrast, primary neurons from the cerebellum and cortex are remarkably resistant to cytosolic cytochrome c. Importantly, tumor tissue from mouse models of both high-grade astrocytoma and medulloblastoma display hypersensitivity to cytochrome c when compared with surrounding brain tissue. This differential sensitivity to cytochrome c is attributed to high Apaf-1 levels in the tumor tissue compared with low Apaf-1 levels in the adjacent brain tissue. These differences in Apaf-1 abundance correlate with differences in the levels of E2F1, a previously identified activator of Apaf-1 transcription. ChIP assays reveal that E2F1 binds the Apaf-1 promoter specifically in tumor tissue, suggesting that E2F1 contributes to the expression of Apaf-1 in brain tumors. Together, these results demonstrate an unexpected sensitivity of brain tumors to postmitochondrial induction of apoptosis. Moreover, they raise the possibility that this phenomenon could be exploited therapeutically to selectively kill brain cancer cells while sparing the surrounding brain parenchyma.
Resumo:
Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.
Resumo:
Centromeres are chromosomal loci essential for genome stability. Their malfunction can cause chromosome instability associated with cancer, infertility, and birth defects. This study focused on an intriguing centromere on human chromosome 17, which displays normal functional variation. Centromere identity can be found on either of two large arrays of repetitive DNA. We investigated inter-individual sequence variation on these two arrays and found association between array size, array variation, and centromere function. Our data suggest a functional influence of DNA sequence at this critical epigenetic locus.
Resumo:
© 2015 Taylor & Francis Group, LLC.A characteristic immunopathology of human cancers is the induction of tumor antigen-specific T lymphocyte responses within solid tumor tissues. Current strategies for immune monitoring focus on the quantification of the density and differentiation status of tumor-infiltrating T lymphocytes; however, properties of the TCR repertoire - including antigen specificity, clonality, as well as its prognostic significance β remain elusive. In this study, we enrolled 28 gastric cancer patients and collected tumor tissues, adjacent normal mucosal tissues, and peripheral blood samples to study the landscape and compartmentalization of these patients’ TCR β repertoire by deep sequencing analyses. Our results illustrated antigen-driven expansion within the tumor compartment and the contracted size of shared clonotypes in mucosa and peripheral blood. Most importantly, the diversity of mucosal T lymphocytes could independently predict prognosis, which strongly underscores critical roles of resident mucosal T-cells in executing post-surgery immunosurveillance against tumor relapse.
Resumo:
© 2016, Serdi and Springer-Verlag France.Objectives: The association between cognitive function and cholesterol levels is poorly understood and inconsistent results exist among the elderly. The purpose of this study is to investigate the association of cholesterol level with cognitive performance among Chinese elderly. Design: A cross-sectional study was implemented in 2012 and data were analyzed using generalized additive models, linear regression models and logistic regression models. Setting: Community-based setting in eight longevity areas in China. Subjects: A total of 2000 elderly aged 65 years and over (mean 85.8±12.0 years) participated in this study. Measurements: Total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) concentration were determined and cognitive impairment was defined as Mini-Mental State Examination (MMSE) score≤23. Results: There was a significant positive linear association between TC, TG, LDL-C, HDL-C and MMSE score in linear regression models. Each 1 mmol/L increase in TC, TG, LDL-C and HDL-C corresponded to a decreased risk of cognitive impairment in logistic regression models. Compared with the lowest tertile, the highest tertile of TC, LDL-C and HDL-C had a lower risk of cognitive impairment. The adjusted odds ratios and 95% CI were 0.73(0.62–0.84) for TC, 0.81(0.70–0.94) for LDL-C and 0.81(0.70–0.94) for HDL-C. There was no gender difference in the protective effects of high TC and LDL-C levels on cognitive impairment. However, for high HDL-C levels the effect was only observed in women. High TC, LDL-C and HDL-C levels were associated with lower risk of cognitive impairment in the oldest old (aged 80 and older), but not in the younger elderly (aged 65 to 79 years). Conclusions: These findings suggest that cholesterol levels within the high normal range are associated with better cognitive performance in Chinese elderly, specifically in the oldest old. With further validation, low cholesterol may serve a clinical indicator of risk for cognitive impairment in the elderly.