887 resultados para Nonrandom two-liquid model
Resumo:
Traditionally, non-invasive monitoring of tidal volume in infants has been performed using impedance plethysmography analyzed using a one or two compartment model. We developed a new laser system for use in infants, which measures antero-posterior movement of the chest wall during quiet sleep. In 24 unsedated or sedated infants (11 healthy, 13 with respiratory disease), we examined whether the analysis of thoracoabdominal movement based on a three compartment model could more accurately estimate tidal volume in comparison to V(T) measured at the mouth. Using five laser signals, chest wall movements were measured at the right and left, upper and lower ribcage and the abdomen. Within the tidal volume range from 4.6 to 135.7 ml, a three compartment model showed good short term repeatability and the best agreement with tidal volume measured at mouth (r(2) = 0.86) compared to that of a single compartment model (r(2) = 0.62, P < 0.0001) and a two compartment model (r(2) = 0.82, P < 0.01), particularly in the presence of respiratory disease. Three compartment modeling of a 5 laser thoracoabdominal monitoring permits more accurate estimates of tidal volume in infants and potentially of regional differences of chest wall displacement in future studies.
Resumo:
Waterproofing agents are widely used to protect leather and textiles in both domestic and occupational activities. An outbreak of acute respiratory syndrome following exposure to waterproofing sprays occurred during the winter 2002-2003 in Switzerland. About 180 cases were reported by the Swiss Toxicological Information Centre between October 2002 and March 2003, whereas fewer than 10 cases per year had been recorded previously. The reported cases involved three brands of sprays containing a common waterproofing mixture, that had undergone a formulation change in the months preceding the outbreak. A retrospective analysis was undertaken in collaboration with the Swiss Toxicological Information Centre and the Swiss Registries for Interstitial and Orphan Lung Diseases to clarify the circumstances and possible causes of the observed health effects. Individual exposure data were generated with questionnaires and experimental emission measurements. The collected data was used to conduct numeric simulation for 102 cases of exposure. A classical two-zone model was used to assess the aerosol dispersion in the near- and far-field during spraying. The resulting assessed dose and exposure levels obtained were spread on large scales, of several orders of magnitude. No dose-response relationship was found between exposure indicators and health effects indicators (perceived severity and clinical indicators). Weak relationships were found between unspecific inflammatory response indicators (leukocytes, C-reactive protein) and the maximal exposure concentration. The results obtained disclose a high interindividual response variability and suggest that some indirect mechanism(s) predominates in the respiratory disease occurrence. Furthermore, no threshold could be found to define a safe level of exposure. These findings suggest that the improvement of environmental exposure conditions during spraying alone does not constitute a sufficient measure to prevent future outbreaks of waterproofing spray toxicity. More efficient preventive measures are needed prior to the marketing and distribution of new waterproofing agents.
Resumo:
Multiple outcomes data are commonly used to characterize treatment effects in medical research, for instance, multiple symptoms to characterize potential remission of a psychiatric disorder. Often either a global, i.e. symptom-invariant, treatment effect is evaluated. Such a treatment effect may over generalize the effect across the outcomes. On the other hand individual treatment effects, varying across all outcomes, are complicated to interpret, and their estimation may lose precision relative to a global summary. An effective compromise to summarize the treatment effect may be through patterns of the treatment effects, i.e. "differentiated effects." In this paper we propose a two-category model to differentiate treatment effects into two groups. A model fitting algorithm and simulation study are presented, and several methods are developed to analyze heterogeneity presenting in the treatment effects. The method is illustrated using an analysis of schizophrenia symptom data.
Resumo:
Simple collagen-related peptides (CRPs) containing a repeat Gly-Pro-Hyp sequence are highly potent platelet agonists. Like collagen, they must exhibit tertiary (triple-helical) and quaternary (polymeric) structure to activate platelets. Platelet signaling events induced by the peptides are the same as most of those induced by collagen. The peptides do not recognize the alpha 2 beta 1 integrin. To identify the signaling receptor involved, we have evaluated the response to the CRP, Gly-Lys-Hyp(Gly-Pro-Hyp)10-Gly-Lys-Hyp-Gly of platelets with defined functional deficiencies. These studies exclude a primary recognition role for CD36, von Willebrand factor (vWF), or glycoprotein (GP) IIb/IIIa. Thus, both CD36 and vWF-deficient platelets exhibited normal aggregation, normal fibrinogen binding, and normal expression of CD62 and CD63, measured by flow cytometry, in response to the peptide, and there was normal expression of CD62 and CD63 on thrombasthenic platelets. In contrast, GPVI-deficient platelets were totally unresponsive to the peptide, indicating that this receptor recognizes the Gly-Pro-Hyp sequence in collagen. GPVI-deficient platelets showed some fibrinogen binding in response to collagen but failed to aggregate and to express CD62 and CD63. Collagen, but not CRP-XL, contains binding sites for alpha 2 beta 1. Therefore, it is possible that collagen still induces some signaling via alpha 2 beta 1, leading to activation of GPIIb/IIIa. Our findings are consistent with a two-site, two-step model of collagen interaction with platelets involving recognition of specific sequences in collagen by an adhesive receptor such as alpha 2 beta 1 to arrest platelets under flow and subsequent recognition of another specific collagen sequence by an activatory receptor, namely GPVI.
Resumo:
BACKGROUND: The arterial pharmacokinetics of ketamine and norketamine enantiomers after racemic ketamine or S-ketamine i.v. administration were evaluated in seven gelding ponies in a crossover study (2-month interval). METHODS: Anaesthesia was induced with isoflurane in oxygen via a face-mask and then maintained at each pony's individual MAC. Racemic ketamine (2.2 mg kg(-1)) or S-ketamine (1.1 mg kg(-1)) was injected in the right jugular vein. Blood samples were collected from the right carotid artery before and at 1, 2, 4, 8, 16, 32, 64, and 128 min after ketamine administration. Ketamine and norketamine enantiomer plasma concentrations were determined by capillary electrophoresis. Individual R-ketamine and S-ketamine concentration vs time curves were analysed by non-linear least square regression two-compartment model analysis using PCNonlin. Plasma disposition curves for R-norketamine and S-norketamine were described by estimating AUC, C(max), and T(max). Pulse rate (PR), respiratory rate (R(f)), tidal volume (V(T)), minute volume ventilation (V(E)), end-tidal partial pressure of carbon dioxide (PE'(CO(2))), and mean arterial blood pressure (MAP) were also evaluated. RESULTS: The pharmacokinetic parameters of S- and R-ketamine administered in the racemic mixture or S-ketamine administered separately did not differ significantly. Statistically significant higher AUC and C(max) were found for S-norketamine compared with R-norketamine in the racemic group. Overall, R(f), V(E), PE'(CO(2)), and MAP were significantly higher in the racemic group, whereas PR was higher in the S-ketamine group. CONCLUSIONS: Norketamine enantiomers showed different pharmacokinetic profiles after single i.v. administration of racemic ketamine in ponies anaesthetised with isoflurane in oxygen (1 MAC). Cardiopulmonary variables require further investigation.
Resumo:
The aim of this study was to evaluate the currently available predictive equations for basal metabolic rate (BMR) in subjects with obesity class II and III, and to assess the contribution by the components of a two-compartment model of body composition, namely the lean body mass (LBM) and the fat mass (FM) to the prediction. A second objective was to examine the reliability of the Harris Benedict equation in obese subjects, especially with a weight > or = 120 kg.
Resumo:
A 'two coat' model of the life cycle of Trypanosoma brucei has prevailed for more than 15 years. Metacyclic forms transmitted by infected tsetse flies and mammalian bloodstream forms are covered by variant surface glycoproteins. All other life cycle stages were believed to have a procyclin coat, until it was shown recently that epimastigote forms in tsetse salivary glands express procyclin mRNAs without translating them. As epimastigote forms cannot be cultured, a procedure was devised to compare the transcriptomes of parasites in different fly tissues. Transcripts encoding a family of glycosylphosphatidyl inositol-anchored proteins, BARPs (previously called bloodstream alanine-rich proteins), were 20-fold more abundant in salivary gland than midgut (procyclic) trypanosomes. Anti-BARP antisera reacted strongly and exclusively with salivary gland parasites and a BARP 3' flanking region directed epimastigote-specific expression of reporter genes in the fly, but inhibited expression in bloodstream and procyclic forms. In contrast to an earlier report, we could not detect BARPs in bloodstream forms. We propose that BARPs form a stage-specific coat for epimastigote forms and suggest renaming them brucei alanine-rich proteins.
Resumo:
A mass‐balance model for Lake Superior was applied to polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and mercury to determine the major routes of entry and the major mechanisms of loss from this ecosystem as well as the time required for each contaminant class to approach steady state. A two‐box model (water column, surface sediments) incorporating seasonally adjusted environmental parameters was used. Both numerical (forward Euler) and analytical solutions were employed and compared. For validation, the model was compared with current and historical concentrations and fluxes in the lake and sediments. Results for PCBs were similar to prior work showing that air‐water exchange is the most rapid input and loss process. The model indicates that mercury behaves similarly to a moderately‐chlorinated PCB, with air‐water exchange being a relatively rapid input and loss process. Modeled accumulation fluxes of PBDEs in sediments agreed with measured values reported in the literature. Wet deposition rates were about three times greater than dry particulate deposition rates for PBDEs. Gas deposition was an important process for tri‐ and tetra‐BDEs (BDEs 28 and 47), but not for higher‐brominated BDEs. Sediment burial was the dominant loss mechanism for most of the PBDE congeners while volatilization was still significant for tri‐ and tetra‐BDEs. Because volatilization is a relatively rapid loss process for both mercury and the most abundant PCBs (tri‐ through penta‐), the model predicts that similar times (from 2 ‐ 10 yr) are required for the compounds to approach steady state in the lake. The model predicts that if inputs of Hg(II) to the lake decrease in the future then concentrations of mercury in the lake will decrease at a rate similar to the historical decline in PCB concentrations following the ban on production and most uses in the U.S. In contrast, PBDEs are likely to respond more slowly if atmospheric concentrations are reduced in the future because loss by volatilization is a much slower process for PBDEs, leading to lesser overall loss rates for PBDEs in comparison to PCBs and mercury. Uncertainties in the chemical degradation rates and partitioning constants of PBDEs are the largest source of uncertainty in the modeled times to steady‐state for this class of chemicals. The modeled organic PBT loading rates are sensitive to uncertainties in scavenging efficiencies by rain and snow, dry deposition velocity, watershed runoff concentrations, and uncertainties in air‐water exchange such as the effect of atmospheric stability.
Resumo:
Stereoselectivity has to be considered for pharmacodynamic and pharmacokinetic features of ketamine. Stereoselective biotransformation of ketamine was investigated in equine microsomes in vitro. Concentration curves were constructed over time, and enzyme activity was determined for different substrate concentrations using equine liver and lung microsomes. The concentrations of R/S-ketamine and R/S-norketamine were determined by enantioselective capillary electrophoresis. A two-phase model based on Hill kinetics was used to analyze the biotransformation of R/S-ketamine into R/S-norketamine and, in a second step, into R/S-downstream metabolites. In liver and lung microsomes, levels of R-ketamine exceeded those of S-ketamine at all time points and S-norketamine exceeded R-norketamine at time points below the maximum concentration. In liver and lung microsomes, significant differences in the enzyme velocity (V(max)) were observed between S- and R-norketamine formation and between V(max) of S-norketamine formation when S-ketamine was compared to S-ketamine of the racemate. Our investigations in microsomal reactions in vitro suggest that stereoselective ketamine biotransformation in horses occurs in the liver and the lung with a slower elimination of S-ketamine in the presence of R-ketamine. Scaling of the in vitro parameters to liver and lung organ clearances provided an excellent fit with previously published in vivo data and confirmed a lung first-pass effect.
Resumo:
In this paper we analyze a dynamic agency problem where contracting parties do not know the agent's future productivity at the beginning of the relationship. We consider a two-period model where both the agent and the principal observe the agent's second-period productivity at the end of the first period. This observation is assumed to be non-verifiable information. We compare long-term contracts with short-term contracts with respect to their suitability to motivate effort in both periods. On the one hand, short-term contracts allow for a better fine-tuning of second-period incentives as they can be aligned with the agent's second-period productivity. On the other hand, in short-term contracts first-period effort incentives might be distorted as contracts have to be sequentially optimal. Hence, the difference between long-term and short-term contracts is characterized by a trade-off between inducing effort in the first and in the second period. We analyze the determinants of this trade-off and demonstrate its implications for performance measurement and information system design.
Resumo:
This report presents the proceedings of the Biochemical Engineering Symposium held at Kansas State University, April 26, 1975. Since a number of the contributions will be published in detail elsewhere, only brief summaries of each contribution are included here. Requests for additional information on projects conducted at Iowa State University should be directed to Dr. Peter J. Reilly, and those at Kansas State University to the editors. Contents"Enzymatic Breakdown of Hemicellulose," Alfred R. Fratzke, Iowa State University "Biochemical Aspects of Hydrocarbon Uptake in Hydrocarbon Fermentations," Tadaatsu Nakahara, Kansas State University "Optimal Concentration Profiles for Bifunctional Catalysts with Langmuir-Hinshelwood Kinetics and Varying Effectiveness Factors," Ho Nam Chang, Iowa State University "Single Cell Protein Production from Hydrocarbons in Tower Systems," J. R. Gutierrez, Kansas State University "Effect of Temperature and pH on the Stability and Activity of Immobilized Glucoamylase and Glucose Isomerase," Gene K. Lee, Iowa State University "Oxygen Transfer in a Tower System with Two Liquid Phases," G. T. MacLean, Kansas State University "Continuous Production of Glucose from Dextrin by Glucoamylase Immlobilized on Porous Silica," Douglas D. Lee, Iowa State University
Resumo:
OBJECTIVE: Occupational low back pain (LBP) is considered to be the most expensive form of work disability, with the socioeconomic costs of persistent LBP exceeding the costs of acute and subacute LBP by far. This makes the early identification of patients at risk of developing persistent LBP essential, especially in working populations. The aim of the study was to evaluate both risk factors (for the development of persistent LBP) and protective factors (preventing the development of persistent LBP) in the same cohort. PARTICIPANTS: An inception cohort of 315 patients with acute to subacute or with recurrent LBP was recruited from 14 health practitioners (twelve general practitioners and two physiotherapists) across New Zealand. METHODS: Patients with persistent LBP at six-month follow-up were compared to patients with non-persistent LBP looking at occupational, psychological, biomedical and demographic/lifestyle predictors at baseline using multiple logistic regression analyses. All significant variables from the different domains were combined into a one predictor model. RESULTS: A final two-predictor model with an overall predictive value of 78% included social support at work (OR 0.67; 95%CI 0.45 to 0.99) and somatization (OR 1.08; 95%CI 1.01 to 1.15). CONCLUSIONS: Social support at work should be considered as a resource preventing the development of persistent LBP whereas somatization should be considered as a risk factor for the development of persistent LBP. Further studies are needed to determine if addressing these factors in workplace interventions for patients suffering from acute, subacute or recurrent LBP prevents subsequent development of persistent LBP.
Resumo:
Tyrosine hydroxylase (TH), the initial and rate limiting enzyme in the catecholaminergic biosynthetic pathway, is phosphorylated on multiple serine residues by multiple protein kinases. Although it has been demonstrated that many protein kinases are capable of phosphorylating and activating TH in vitro, it is less clear which protein kinases participate in the physiological regulation of catecholamine synthesis in situ. These studies were designed to determine if protein kinase C (PK-C) plays such a regulatory role.^ Stimulation of intact bovine adrenal chromaffin cells with phorbol esters results in stimulation of catecholamine synthesis, tyrosine hydroxylase phosphorylation and activation. These responses are both time and concentration dependent, and are specific for those phorbol ester analogues which activate PK-C. RP-HPLC analysis of TH tryptic phosphopeptides indicate that PK-C phosphorylates TH on three putative sites. One of these (pepetide 6) is the same as that phosphorylated by both cAMP-dependent protein kinase (PK-A) and calcium/calmodulin-dependent protein kinase (CaM-K). However, two of these sites (peptides 4 and 7) are unique, and, to date, have not been shown to be phosphorylated by any other protein kinase. These peptides correspond to those which are phosphorylated with a slow time course in response to stimulation of chromaffin cells with the natural agonist acetylcholine. The activation of TH produced by PK-C is most closely correlated with the phosphorylation of peptide 6. But, as evident from pH profiles of tyrosine hydroxylase activity, phosphorylation of peptides 4 and 7 affect the expression of the activation produced by phosphorylation of peptide 6.^ These data support a role for PK-C in the control of TH activity, and suggest a two stage model for the physiological regulation of catecholamine synthesis by phosphorylation in response to cholinergic stimulation. An initial fast response, which appears to be mediated by CaM-K, and a slower, sustained response which appears to be mediated by PK-C. In addition, the multiple site phosphorylation of TH provides a mechanism whereby the regulation of catecholamine synthesis appears to be under the control of multiple protein kinases, and allows for the convergence of multiple, diverse physiological and biochemical signals. ^
Resumo:
Retinoblastoma is a pediatric tumor which is associated with somatic and inherited mutations at the retinoblastoma susceptibility locus, RB1. Although most cases of retinoblastoma fit the previously described 'two hit' model of oncogenesis, the molecular mechanisms underlying rare instances of familial retinoblastoma with reduced penetrance are not well understood. To better understand this phenomenon, a study was undertaken to uncover the molecular cause of low penetrance retinoblastoma in a limited number of families. In one case, a unique cryptic splicing alteration was discovered in the RB1 gene and demonstrated to reduce the level of normal RB1 mRNA produced. Penetrance in the large family known to carry this mutation is less than 50%. Data about the mutation supports a theory that reduced penetrance retinoblastoma is caused by partially functional mutations in RB1. In another family, three independent causes of retinoblastoma or the related phenotype of retinoma were indicated by linkage analysis, a finding unique in retinoblastoma research. A novel polymorphism restricted to Asian populations was also described during the course of this study. ^
Resumo:
In order to fully describe the construct of empowerment and to determine possible measures for this construct in racially and ethnically diverse neighborhoods, a qualitative study based on Grounded Theory was conducted at both the individual and collective levels. Participants for the study included 49 grassroots experts on community empowerment who were interviewed through semi-structured interviews and focus groups. The researcher also conducted field observations as part of the research protocol.^ The results of the study identified benchmarks of individual and collective empowerment and hundreds of possible markers of collective empowerment applicable in diverse communities. Results also indicated that community involvement is essential in the selection and implementation of proper measures. Additional findings were that the construct of empowerment involves specific principles of empowering relationships and particular motivational factors. All of these findings lead to a two dimensional model of empowerment based on the concepts of relationships among members of a collective body and the collective body's desire for socio-political change.^ These results suggest that the design, implementation, and evaluation of programs that foster empowerment must be based on collaborative ventures between the population being served and program staff because of the interactive, synergistic nature of the construct. In addition, empowering programs should embrace specific principles and processes of individual and collective empowerment in order to maximize their effectiveness and efficiency. And finally, the results suggest that collaboratively choosing markers to measure the processes and outcomes of empowerment in the main systems and populations living in today's multifaceted communities is a useful mechanism to determine change. ^