978 resultados para Nonlinear optical characterization
Resumo:
We present experimental results on the performance of a series of coated, D-shaped optical fiber sensors that display high spectral sensitivities to external refractive index. Sensitivity to the chosen index regime and coupling of the fiber core mode to the surface plasmon resonance (SPR) is enhanced by using specific materials as part of a multi-layered coating. We present strong evidence that this effect is enhanced by post ultraviolet radiation of the lamellar coating that results in the formation of a nano-scale surface relief corrugation structure, which generates an index perturbation within the fiber core that in turn enhances the coupling. We have found reasonable agreement when we modeling the fiber device. It was found that the SPR devices operate in air with high coupling efficiency in excess of 40 dB with spectral sensitivities that outperform a typical long period grating, with one device yielding a wavelength spectral sensitivity of 12000 nm/RIU in the important aqueous index regime. The devices generate SPRs over a very large wavelength range, (visible to 2 mu m) by alternating the polarization state of the illuminating light.
Resumo:
All-optical data processing is expected to play a major role in future optical communications. Nonlinear effects in optical fibers have attractive applications in optical signal processing. In this paper, we review our recent advances in developing all-optical processing techniques at high speed based on optical fiber nonlinearities.
Resumo:
PMMA based polymer optical fibre Bragg gratings have been used for humidity, temperature and concentration sensing. Due to the water affinity of PMMA, the characteristic wavelength of the grating is largely modulated by the water content in the fibre. The rate of water transportation between fibre and surrounding depends on the permeability coefficient for PMMA, which is a function of surrounding temperature and humidity. This leads to increased water content with increasing humidity and temperature. Consequently the wavelength of the grating shows a nonlinear change over varying humidity and temperature. This nonlinearity needs to be calibrated prior to sensor application.
Resumo:
We have proposed a new technique of all-optical nonlinear pulse processing for use at a RZ optical receiver, which is based on an AM or any device with a similar function of temporal gating/slicing enhanced by the effect of Kerr nonlinearity in a NDF. The efficiency of the technique has been demonstrated by application to timing jitter and noise-limited RZ transmission at 40 Gbit/s. Substantial suppression of the signal timing jitter and overall improvement of the receiver performance has been demonstrated using the proposed method.
Resumo:
We provide an overview of our recent work on the shaping and stability of optical continua in the long pulse regime. Fibers with normal group-velocity dispersion at all-wavelengths are shown to allow for highly coherent continua that can be nonlinearly shaped using appropriate initial conditions. In contrast, supercontinua generated in the anomalous dispersion regime are shown to exhibit large fluctuations in the temporal and spectral domains that can be controlled using a carefully chosen seed. A particular example of this is the first experimental observation of the Peregrine soliton which constitutes a prototype of optical rogue-waves. © 2012 Elsevier Inc. All rights reserved.
Resumo:
In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.
Resumo:
In the third and final talk on dissipative structures in fiber applications, we discuss mathematical techniques that can be used to characterize modern laser systems that consist of several discrete elements. In particular, we use a nonlinear mapping technique to evaluate high power laser systems where significant changes in the pulse evolution per cavity round trip is observed. We demonstrate that dissipative soliton solutions might be effectively described using this Poincaré mapping approach.
Resumo:
Direct measurements of the absorbed energy in femtosecond laser inscription in a range of materials is performed. Key absorption parameters are characterized by fitting numerical modelling to measurements.
Resumo:
All-optical data processing is expected to play a major role in future optical communications. Nonlinear effects in optical fibers have attractive applications in optical signal processing. In this paper, we review our recent advances in developing all-optical processing techniques at high speed based on optical fiber nonlinearities.
Resumo:
We demonstrate that a combination of Raman laser based amplification and optical phase conjugation enables transmission beyond the nonlinear-Shannon limit. We show nonlinear compensation of 7x114Gbit/s DP-QPSK channels, increasing system reach by 30%. © 2013 Optical Society of America.
Resumo:
We scrutinize the concept of integrable nonlinear communication channels, resurrecting and extending the idea of eigenvalue communications in a novel context of nonsoliton coherent optical communications. Using the integrable nonlinear Schrödinger equation as a channel model, we introduce a new approach - the nonlinear inverse synthesis method - for digital signal processing based on encoding the information directly onto the nonlinear signal spectrum. The latter evolves trivially and linearly along the transmission line, thus, providing an effective eigenvalue division multiplexing with no nonlinear channel cross talk. The general approach is illustrated with a coherent optical orthogonal frequency division multiplexing transmission format. We show how the strategy based upon the inverse scattering transform method can be geared for the creation of new efficient coding and modulation standards for the nonlinear channel. © Published by the American Physical Society.