918 resultados para Non-linear systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fixed-point roundoff noise in digital implementation of linear systems arises due to overflow, quantization of coefficients and input signals, and arithmetical errors. In uniform white-noise models, the last two types of roundoff errors are regarded as uniformly distributed independent random vectors on cubes of suitable size. For input signal quantization errors, the heuristic model is justified by a quantization theorem, which cannot be directly applied to arithmetical errors due to the complicated input-dependence of errors. The complete uniform white-noise model is shown to be valid in the sense of weak convergence of probabilistic measures as the lattice step tends to zero if the matrices of realization of the system in the state space satisfy certain nonresonance conditions and the finite-dimensional distributions of the input signal are absolutely continuous.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non-linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT-alpha algorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT-alpha method. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid-point of a cycle. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The presence of entrapped air in pressurized hydraulic systems is considered a critical condition for the infrastructure security, due to the transient pressure enhancement related with its dynamic behaviour, similar to non-linear spring action. A mathematical model for the assessment of hydraulic transients resulting from rapid pressurizations, under referred condition is presented. Water movement was modeled through the elastic column theory considering a moving liquid boundary and the entrapped air pocket as lumped gas mass, where the acoustic effects are negligible. The method of characteristics was used to obtain the numerical solution of the liquid flow. The resulting model is applied to an experimental set-up having entrapped air in the top of a vertical pipe section and the numerical results are analyzed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of distributed energy resources, based on natural intermittent power sources, like wind generation, in power systems imposes the development of new adequate operation management and control methodologies. A short-term Energy Resource Management (ERM) methodology performed in two phases is proposed in this paper. The first one addresses the day-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. The ERM scheduling is a complex optimization problem due to the high quantity of variables and constraints. In this paper the main goal is to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixedinteger non-linear programming approach. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units and 1000 electric vehicles has been implemented in a simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The introduction of new distributed energy resources, based on natural intermittent power sources, in power systems imposes the development of new adequate operation management and control methods. This paper proposes a short-term Energy Resource Management (ERM) methodology performed in two phases. The first one addresses the hour-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. Both phases consider the day-ahead resource scheduling solution. The ERM scheduling is formulated as an optimization problem that aims to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixed-integer non-linear programming approach and by a heuristic approach based on genetic algorithms. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units has been implemented in a PSCADbased simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper addresses the problem of energy resource scheduling. An aggregator will manage all distributed resources connected to its distribution network, including distributed generation based on renewable energy resources, demand response, storage systems, and electrical gridable vehicles. The use of gridable vehicles will have a significant impact on power systems management, especially in distribution networks. Therefore, the inclusion of vehicles in the optimal scheduling problem will be very important in future network management. The proposed particle swarm optimization approach is compared with a reference methodology based on mixed integer non-linear programming, implemented in GAMS, to evaluate the effectiveness of the proposed methodology. The paper includes a case study that consider a 32 bus distribution network with 66 distributed generators, 32 loads and 50 electric vehicles.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The growing importance and influence of new resources connected to the power systems has caused many changes in their operation. Environmental policies and several well know advantages have been made renewable based energy resources largely disseminated. These resources, including Distributed Generation (DG), are being connected to lower voltage levels where Demand Response (DR) must be considered too. These changes increase the complexity of the system operation due to both new operational constraints and amounts of data to be processed. Virtual Power Players (VPP) are entities able to manage these resources. Addressing these issues, this paper proposes a methodology to support VPP actions when these act as a Curtailment Service Provider (CSP) that provides DR capacity to a DR program declared by the Independent System Operator (ISO) or by the VPP itself. The amount of DR capacity that the CSP can assure is determined using data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 33 bus distribution network.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper studies the dynamics of a system composed of a collection of particles that exhibit collisions between them. Several entropy measures and different impact conditions of the particles are tested. The results reveal a Power Law evolution both of the system energy and the entropy measures, typical in systems having fractional dynamics.