942 resultados para Neonates, EEG Analysis, Seizures, Signal Processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally demonstrate the use of full-field electronic dispersion compensation (EDC) to achieve a bit error rate of 5 x 10(-5) at 22.3 dB optical signal-to-noise ratio for single-channel 10 Gbit/s on-off keyed signal after transmission over 496 km field-installed single-mode fibre with an amplifier spacing of 124 km. This performance is achieved by designing the EDC so as to avoid electronic amplification of the noise content of the signal during full-field reconstruction. We also investigate the tolerance of the system to key signal processing parameters, and numerically demonstrate that single-channel 2160 km single mode fibre transmission without in-line optical dispersion compensation can be achieved using this technique with 80 km amplifier spacing and optimized system parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research was to investigate the effects of Processing Instruction (VanPatten, 1996, 2007), as an input-based model for teaching second language grammar, on Syrian learners’ processing abilities. The present research investigated the effects of Processing Instruction on the acquisition of English relative clauses by Syrian learners in the form of a quasi-experimental design. Three separate groups were involved in the research (Processing Instruction, Traditional Instruction and a Control Group). For assessment, a pre-test, a direct post-test and a delayed post-test were used as main tools for eliciting data. A questionnaire was also distributed to participants in the Processing Instruction group to give them the opportunity to give feedback in relation to the treatment they received in comparison with the Traditional Instruction they are used to. Four hypotheses were formulated on the possible effectivity of Processing Instruction on Syrian learners’ linguistic system. It was hypothesised that Processing Instruction would improve learners’ processing abilities leading to an improvement in learners’ linguistic system. This was expected to lead to a better performance when it comes to the comprehension and production of English relative clauses. The main source of data was analysed statistically using the ANOVA test. Cohen’s d calculations were also used to support the ANOVA test. Cohen’s d showed the magnitude of effects of the three treatments. Results of the analysis showed that both Processing Instruction and Traditional Instruction groups had improved after treatment. However, the Processing Instruction Group significantly outperformed the other two groups in the comprehension of relative clauses. The analysis concluded that Processing Instruction is a useful tool for instructing relative clauses to Syrian learners. This was enhanced by participants’ responses to the questionnaire as they were in favour of Processing Instruction, rather than Traditional Instruction. This research has theoretical and pedagogical implications. Theoretically, the study showed support for the Input hypothesis. That is, it was shown that Processing Instruction had a positive effect on input processing as it affected learners’ linguistic system. This was reflected in learners’ performance where learners were able to produce a structure which they had not been asked to produce. Pedagogically, the present research showed that Processing Instruction is a useful tool for teaching English grammar in the context where the experiment was carried out, as it had a large effect on learners’ performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photonic signal processing is used to implement common mode signal cancellation across a very wide bandwidth utilising phase modulation of radio frequency (RF) signals onto a narrow linewidth laser carrier. RF spectra were observed using narrow-band, tunable optical filtering using a scanning Fabry Perot etalon. Thus functions conventionally performed using digital signal processing techniques in the electronic domain have been replaced by analog techniques in the photonic domain. This technique was able to observe simultaneous cancellation of signals across a bandwidth of 1400 MHz, limited only by the free spectral range of the etalon. © 2013 David M. Benton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we summarize the state-of-the-art of speech emotion recognition from the signal processing point of view. On the bases of multi-corporal experiments with machine-learning classifiers, the observation is made that existing approaches for supervised machine learning lead to database dependent classifiers which can not be applied for multi-language speech emotion recognition without additional training because they discriminate the emotion classes following the used training language. As there are experimental results showing that Humans can perform language independent categorisation, we made a parallel between machine recognition and the cognitive process and tried to discover the sources of these divergent results. The analysis suggests that the main difference is that the speech perception allows extraction of language independent features although language dependent features are incorporated in all levels of the speech signal and play as a strong discriminative function in human perception. Based on several results in related domains, we have suggested that in addition, the cognitive process of emotion-recognition is based on categorisation, assisted by some hierarchical structure of the emotional categories, existing in the cognitive space of all humans. We propose a strategy for developing language independent machine emotion recognition, related to the identification of language independent speech features and the use of additional information from visual (expression) features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a comparative study of the influence of dispersion induced phase noise for n-level PSK systems. From the analysis, we conclude that the phase noise influence for classical homodyne/heterodyne PSK systems is entirely determined by the modulation complexity (expressed in terms of constellation diagram) and the analogue demodulation format. On the other hand, the use of digital signal processing (DSP) in homodyne/intradyne systems renders a fiber length dependence originating from the generation of equalization enhanced phase noise. For future high capacity systems, high constellations must be used in order to lower the symbol rate to practically manageable speeds, and this fact puts severe requirements to the signal and local oscillator (LO) linewidths. Our results for the bit-error-rate (BER) floor caused by the phase noise influence in the case of QPSK, 16PSK and 64PSK systems outline tolerance limitations for the LO performance: 5 MHz linewidth (at 3-dB level) for 100 Gbit/s QPSK; 1 MHz for 400 Gbit/s QPSK; 0.1 MHz for 400 Gbit/s 16PSK and 1 Tbit/s 64PSK systems. This defines design constrains for the phase noise impact in distributed-feed-back (DFB) or distributed-Bragg-reflector (DBR) semiconductor lasers, that would allow moving the system capacity from 100 Gbit/s system capacity to 400 Gbit/s in 3 years (1 Tbit/s in 5 years). It is imperative at the same time to increase the analogue to digital conversion (ADC) speed such that the single quadrature symbol rate goes from today's 25 GS/s to 100 GS/s (using two samples per symbol). © 2014 by Walter de Gruyter Berlin/Boston.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gastroesophageal reflux disease (GERD) is a common cause of chronic cough. For the diagnosis and treatment of GERD, it is desirable to quantify the temporal correlation between cough and reflux events. Cough episodes can be identified on esophageal manometric recordings as short-duration, rapid pressure rises. The present study aims at facilitating the detection of coughs by proposing an algorithm for the classification of cough events using manometric recordings. The algorithm detects cough episodes based on digital filtering, slope and amplitude analysis, and duration of the event. The algorithm has been tested on in vivo data acquired using a single-channel intra-esophageal manometric probe that comprises a miniature white-light interferometric fiber optic pressure sensor. Experimental results demonstrate the feasibility of using the proposed algorithm for identifying cough episodes based on real-time recordings using a single channel pressure catheter. The presented work can be integrated with commercial reflux pH/impedance probes to facilitate simultaneous 24-hour ambulatory monitoring of cough and reflux events, with the ultimate goal of quantifying the temporal correlation between the two types of events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

World’s mobile market pushes past 2 billion lines in 2005. Success in these competitive markets requires operational excellence with product and service innovation to improve the mobile performance. Mobile users very often prefer to send a mobile instant message or text messages rather than talking on a mobile. Well developed “written speech analysis” does not work not only with “verbal speech” but also with “mobile text messages”. The main purpose of our paper is, firstly, to highlight the problems of mobile text messages processing and, secondly, to show the possible ways of solving these problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The never-stopping increase in demand for information transmission capacity has been met with technological advances in telecommunication systems, such as the implementation of coherent optical systems, advanced multilevel multidimensional modulation formats, fast signal processing, and research into new physical media for signal transmission (e.g. a variety of new types of optical fibers). Since the increase in the signal-to-noise ratio makes fiber communication channels essentially nonlinear (due to the Kerr effect for example), the problem of estimating the Shannon capacity for nonlinear communication channels is not only conceptually interesting, but also practically important. Here we discuss various nonlinear communication channels and review the potential of different optical signal coding, transmission and processing techniques to improve fiber-optic Shannon capacity and to increase the system reach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principal feature of ontology, which is developed for a text processing, is wider knowledge representation of an external world due to introduction of three-level hierarchy. It allows to improve semantic interpretation of natural language texts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiotocographic data provide physicians information about foetal development and permit to assess conditions such as foetal distress. An incorrect evaluation of the foetal status can be of course very dangerous. To improve interpretation of cardiotocographic recordings, great interest has been dedicated to foetal heart rate variability spectral analysis. It is worth reminding, however, that foetal heart rate is intrinsically an uneven series, so in order to produce an evenly sampled series a zero-order, linear or cubic spline interpolation can be employed. This is not suitable for frequency analyses because interpolation introduces alterations in the foetal heart rate power spectrum. In particular, interpolation process can produce alterations of the power spectral density that, for example, affects the estimation of the sympatho-vagal balance (computed as low-frequency/high-frequency ratio), which represents an important clinical parameter. In order to estimate the frequency spectrum alterations of the foetal heart rate variability signal due to interpolation and cardiotocographic storage rates, in this work, we simulated uneven foetal heart rate series with set characteristics, their evenly spaced versions (with different orders of interpolation and storage rates) and computed the sympatho-vagal balance values by power spectral density. For power spectral density estimation, we chose the Lomb method, as suggested by other authors to study the uneven heart rate series in adults. Summarising, the obtained results show that the evaluation of SVB values on the evenly spaced FHR series provides its overestimation due to the interpolation process and to the storage rate. However, cubic spline interpolation produces more robust and accurate results. © 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long-term foetal surveillance is often to be recommended. Hence, the fully non-invasive acoustic recording, through maternal abdomen, represents a valuable alternative to the ultrasonic cardiotocography. Unfortunately, the recorded heart sound signal is heavily loaded by noise, thus the determination of the foetal heart rate raises serious signal processing issues. In this paper, we present a new algorithm for foetal heart rate estimation from foetal phonocardiographic recordings. A filtering is employed as a first step of the algorithm to reduce the background noise. A block for first heart sounds enhancing is then used to further reduce other components of foetal heart sound signals. A complex logic block, guided by a number of rules concerning foetal heart beat regularity, is proposed as a successive block, for the detection of most probable first heart sounds from several candidates. A final block is used for exact first heart sound timing and in turn foetal heart rate estimation. Filtering and enhancing blocks are actually implemented by means of different techniques, so that different processing paths are proposed. Furthermore, a reliability index is introduced to quantify the consistency of the estimated foetal heart rate and, based on statistic parameters; [,] a software quality index is designed to indicate the most reliable analysis procedure (that is, combining the best processing path and the most accurate time mark of the first heart sound, provides the lowest estimation errors). The algorithm performances have been tested on phonocardiographic signals recorded in a local gynaecology private practice from a sample group of about 50 pregnant women. Phonocardiographic signals have been recorded simultaneously to ultrasonic cardiotocographic signals in order to compare the two foetal heart rate series (the one estimated by our algorithm and the other provided by cardiotocographic device). Our results show that the proposed algorithm, in particular some analysis procedures, provides reliable foetal heart rate signals, very close to the reference cardiotocographic recordings. © 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1mm for displacements parallel to the fluoroscopic plane, and of order of 10mm for the orthogonal displacement. © 2010 P. Bifulco et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital nystagmus is an ocular-motor disorder that develops in the first few months of life; its pathogenesis is still unknown. Patients affected by congenital nystagmus show continuous, involuntary, rhythmical oscillations of the eyes. Monitoring eye movements, nystagmus main features such as shape, amplitude and frequency, can be extracted and analysed. Previous studies highlighted, in some cases, a much slower and smaller oscillation, which appears added up to the ordinary nystagmus waveform. This sort of baseline oscillation, or slow nystagmus, hinder precise cycle-to-cycle image placement onto the fovea. Such variability of the position may reduce patient visual acuity. This study aims to analyse more extensively eye movements recording including the baseline oscillation and investigate possible relationships between these slow oscillations and nystagmus. Almost 100 eye movement recordings (either infrared-oculographic or electrooculographic), relative to different gaze positions, belonging to 32 congenital nystagmus patients were analysed. The baseline oscillation was assumed sinusoidal; its amplitude and frequency were computed and compared with those of the nystagmus by means of a linear regression analysis. The results showed that baseline oscillations were characterised by an average frequency of 0.36 Hz (SD 0.11 Hz) and an average amplitude of 2.1° (SD 1.6°). It also resulted in a considerable correlation (R2 scored 0.78) between nystagmus amplitude and baseline oscillation amplitude; the latter, on average, resulted to be about one-half of the correspondent nystagmus amplitude. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to model normal airframe conditions for helicopters in order to detect changes. This is done by inferring the flying state using a selection of sensors and frequency bands that are best for discriminating between different states. We used non-linear state-space models (NLSSM) for modelling flight conditions based on short-time frequency analysis of the vibration data and embedded the models in a switching framework to detect transitions between states. We then created a density model (using a Gaussian mixture model) for the NLSSM innovations: this provides a model for normal operation. To validate our approach, we used data with added synthetic abnormalities which was detected as low-probability periods. The model of normality gave good indications of faults during the flight, in the form of low probabilities under the model, with high accuracy (>92 %). © 2013 IEEE.