961 resultados para Nearshore Regions of Goa
Resumo:
Finite element models of bones can be created by deriving geometry from anx-ray CT scan. Material properties such as the elastic modulus can then be applied using either a single or set of homogeneous values, or individual elements can have local values mapped onto them. Values for the elastic modulus can be derived from the CT density values using an elasticityversus density relationship. Many elasticity–density relationships have been reported in the literature for human bone. However, while ovine in vivo models are common in orthopaedic research, no work has been done to date on creating FE models of ovine bones. To create these models and apply relevant material properties, an ovine elasticity-density relationship needs to be determined. Using fresh frozen ovine tibias the apparent density of regions of interest was determined from a clinical CT scan. The bones were the sectioned into cuboid samples of cortical bone from the regions of interest. Ultrasound was used to determine the elastic modulus in each of three directions – longitudinally, radially and tangentially. Samples then underwent traditional compression testing in each direction. The relationships between apparent density and both ultrasound, and compression modulus in each directionwere determined. Ultrasound testing was found to be a highly repeatable non-destructive method of calculating the elastic modulus, particularly suited to samples of this size. The elasticity-density relationships determined in the longitudinal direction were very similar between the compression and ultrasound data over the density range examined.A clear difference was seen in the elastic modulus between the longitudinal and transverse directions of the bone samples, and a transverse elasticity-density relationship is also reported.
Resumo:
We examine some variations of standard probability designs that preferentially sample sites based on how easy they are to access. Preferential sampling designs deliver unbiased estimates of mean and sampling variance and will ease the burden of data collection but at what cost to our design efficiency? Preferential sampling has the potential to either increase or decrease sampling variance depending on the application. We carry out a simulation study to gauge what effect it will have when sampling Soil Organic Carbon (SOC) values in a large agricultural region in south-eastern Australia. Preferential sampling in this region can reduce the distance to travel by up to 16%. Our study is based on a dataset of predicted SOC values produced from a datamining exercise. We consider three designs and two ways to determine ease of access. The overall conclusion is that sampling performance deteriorates as the strength of preferential sampling increases, due to the fact the regions of high SOC are harder to access. So our designs are inadvertently targeting regions of low SOC value. The good news, however, is that Generalised Random Tessellation Stratification (GRTS) sampling designs are not as badly affected as others and GRTS remains an efficient design compared to competitors.
Resumo:
The amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) reverses dopamine and serotonin transporters to produce efflux of dopamine and serotonin, respectively, in regions of the brain that have been implicated in reward. However, the role of serotonin/dopamine interactions in the behavioral effects of MDMA remains unclear. We previously showed that MDMA-induced locomotion, serotonin and dopamine release are 5-HT(2B) receptor-dependent. The aim of the present study was to determine the contribution of serotonin and 5-HT(2B) receptors to the reinforcing properties of MDMA. We show here that 5-HT(2B) (-/-) mice do not exhibit behavioral sensitization or conditioned place preference following MDMA (10 mg/kg) injections. In addition, MDMA-induced reinstatement of conditioned place preference after extinction and locomotor sensitization development are each abolished by a 5-HT(2B) receptor antagonist (RS127445) in wild type mice. Accordingly, MDMA-induced dopamine D1 receptor-dependent phosphorylation of extracellular regulated kinase in nucleus accumbens is abolished in mice lacking functional 5-HT(2B) receptors. Nevertheless, high doses (30 mg/kg) of MDMA induce dopamine-dependent but serotonin and 5-HT(2B) receptor-independent behavioral effects. These results underpin the importance of 5-HT(2B) receptors in the reinforcing properties of MDMA and illustrate the importance of dose-dependent effects of MDMA on serotonin/dopamine interactions.
SWIRLnet : portable anemometer network for wind speed measurements of land-falling tropical cyclones
Resumo:
Wind speed measurement systems are sparse in the tropical regions of Australia. Tropical cyclone wind speeds impacting communities are often ‘guestimated’ from analyzing damaged structures. A re-locatable anemometer system is required to enable measurements of wind speeds. This paper discusses design criteria of the tripods and tie down system, proposed deployment of the anemometers, instrumentation, and data logging. Preliminary assessment of the anemometer response indicates a reliable system for 1 second response, however, it is noted that the Australian building code and wind loading standard uses a moving average time of approximately 0.2 seconds for its wind speed design criteria.
Resumo:
Wind speed measurement systems are sparse in the tropical regions of Australia. Given this, tropical cyclone wind speeds impacting communities are seldom measured and often only ‘guestimated’ by analysing the extent of damage to structures. In an attempt to overcome this dearth of data, a re-locatable network of anemometers to be deployed prior to tropical cyclone landfall is currently being developed. This paper discusses design criteria of the network’s tripods and tie down system, proposed deployment of the anemometers, instrumentation and data logging. Preliminary assessment of the anemometer response indicates a reliable system for measuring the spectral component of wind with frequencies of approximately 1 Hz. This system limitation highlights an important difference between the capabilities of modern instrumentation and that of the Dines anemometer (around 0.2 seconds) that was used to develop much of the design criteria within the Australian building code and wind loading standard.
Resumo:
Convectively driven downburst winds pose a threat to structures and communities in many regions of Australia not subject to tropical cyclones. Extreme value analysis shows that for return periods of interest to engineering design these events produce higher gust wind speeds than synoptic scale windstorms. Despite this, comparatively little is known of the near ground wind structure of these potentially hazardous windstorms. With this in mind, a series of idealised three-dimensional numerical simulations were undertaken to investigate convective storm wind fields. A dry, non-hydrostatic, sub-cloud model with parameterisation of the microphysics was used. Simulations were run with a uniform 20 m horizontal grid resolution and a variable vertical resolution increasing from 1 m. A systematic grid resolution study showed further refinement did not alter the morphological structure of the outflow. Simulations were performed for stationary downbursts in a quiescent air field, stationary downbursts embedded within environmental boundary layer winds, and also translating downbursts embedded within environmental boundary layer winds.
Resumo:
Thunderstorm downbursts are important for wind engineers as they have been shown to produce the design wind speeds for mid to high return periods in many regions of Australia [1]. In structural design codes (e.g. AS/NZS1170.02-02) an atmospheric boundary layer (ABL) is assumed, and a vertical profile is interpolated from recorded 10 m wind speeds. The ABL assumption is however inaccurate when considering the complex structure of a thunderstorm outflow, and its effects on engineered structures. Several researchers have shown that the downburst, close to its point of divergence is better represented by an impinging wall jet profile than the traditional ABL. Physical modelling is the generally accepted approach to estimate wind loads on structures and it is therefore important to physically model the thunderstorm downburst so that its effects on engineered structures may be studied. An advancement on the simple impinging jet theory, addressed here is the addition of a pulsing mechanism to the jet which allows not only the divergent characteristics of a downburst to be produced, but also it allows the associated leading ring vortex to be developed. The ring vortex modelling is considered very important for structural design as it is within the horizontal vortex that the largest velocities occur [2]. This paper discusses the flow field produced by a pulsed wall jet, and also discusses the induced pressures that this type of flow has on a scaled tall building.
Resumo:
S. japonicum infection is believed to be endemic in 28 of the 80 provinces of the Philippines and the most recent data on schistosomiasis prevalence have shown considerable variability between provinces. In order to increase the efficient allocation of parasitic disease control resources in the country, we aimed to describe the small scale spatial variation in S. japonicum prevalence across the Philippines, quantify the role of the physical environment in driving the spatial variation of S. japonicum, and develop a predictive risk map of S. japonicum infection. Data on S. japonicum infection from 35,754 individuals across the country were geo-located at the barangay level and included in the analysis. The analysis was then stratified geographically for Luzon, the Visayas and Mindanao. Zero-inflated binomial Bayesian geostatistical models of S. japonicum prevalence were developed and diagnostic uncertainty was incorporated. Results of the analysis show that in the three regions, males and individuals aged ≥ 20 years had significantly higher prevalence of S. japonicum compared with females and children <5 years. The role of the environmental variables differed between regions of the Philippines. S. japonicum infection was widespread in the Visayas whereas it was much more focal in Luzon and Mindanao. This analysis revealed significant spatial variation in prevalence of S. japonicum infection in the Philippines. This suggests that a spatially targeted approach to schistosomiasis interventions, including mass drug administration, is warranted. When financially possible, additional schistosomiasis surveys should be prioritized to areas identified to be at high risk, but which were underrepresented in our dataset.
Resumo:
Large scale exome sequencing studies have revealed regions of the genome, which contribute to the castrate resistant prostate cancer (CRPC) phenotype. [1],[2],[3] Such studies have identified mutations in genes, which may have diagnostic/prognostic potential, or which may be targeted therapeutically. Two of these genes include the androgen receptor (AR) and speckle-type POZ protein (SPOP) genes. However, the findings from these exome sequencing studies can only be translated therapeutically once the functional consequences of these mutations have been determined. Here, we highlight the recent study by An et al. [4] which investigated the functional effects of mutations in the SPOP gene that were identified in the aforementioned exome sequencing studies, particularly in the context of SPOP-mediated degradation of the AR.
Resumo:
Participation is a word frequently espoused in the literature of childhood and urban studies. It has also been made sacrosanct through the Convention on the Rights of the Child and other rights-based policy and programming. Despite this importance, what it means and how it is experienced in the everyday lives of children with diverse abilities is not well understood. This chapter provides insight into the everyday experiences of participation by ten children 9-12 years of age, who have diverse personal mobility from various physical conditions that affect muscle and movement differently, including: Muscular Dystrophy, Cerebral Palsy, and Autoimmune Rheumatic Diseases. The children participants live in the outer suburbs and inner regions of south-east Queensland, Australia. The chapter discusses a new way of understanding and theorising participation as a journey of becoming involved. This knowledge emerged through the children’s body-space-time routines (body ballets) and their descriptions of inhabiting urban space. This chapter also establishes how body-space-context interplays shape the experiences of becoming and being involved in everyday life, as well as the preconceptions of body embed in space which divide and constrain children and families actualisation of full and genuine participation.
Resumo:
Because moving depictions of face emotion have greater ecological validity than their static counterparts, it has been suggested that still photographs may not engage ‘authentic’ mechanisms used to recognize facial expressions in everyday life. To date, however, no neuroimaging studies have adequately addressed the question of whether the processing of static and dynamic expressions rely upon different brain substrates. To address this, we performed an functional magnetic resonance imaging (fMRI) experiment wherein participants made emotional expression discrimination and Sex discrimination judgements to static and moving face images. Compared to Sex discrimination, Emotion discrimination was associated with widespread increased activation in regions of occipito-temporal, parietal and frontal cortex. These regions were activated both by moving and by static emotional stimuli, indicating a general role in the interpretation of emotion. However, portions of the inferior frontal gyri and supplementary/pre-supplementary motor area showed task by motion interaction. These regions were most active during emotion judgements to static faces. Our results demonstrate a common neural substrate for recognizing static and moving facial expressions, but suggest a role for the inferior frontal gyrus in supporting simulation processes that are invoked more strongly to disambiguate static emotional cues.
Resumo:
Escherichia coli ST131 is now recognised as a leading contributor to urinary tract and bloodstream infections in both community and clinical settings. Here we present the complete, annotated genome of E. coli EC958, which was isolated from the urine of a patient presenting with a urinary tract infection in the Northwest region of England and represents the most well characterised ST131 strain. Sequencing was carried out using the Pacific Biosciences platform, which provided sufficient depth and read-length to produce a complete genome without the need for other technologies. The discovery of spurious contigs within the assembly that correspond to site-specific inversions in the tail fibre regions of prophages demonstrates the potential for this technology to reveal dynamic evolutionary mechanisms. E. coli EC958 belongs to the major subgroup of ST131 strains that produce the CTX-M-15 extended spectrum β-lactamase, are fluoroquinolone resistant and encode the fimH30 type 1 fimbrial adhesin. This subgroup includes the Indian strain NA114 and the North American strain JJ1886. A comparison of the genomes of EC958, JJ1886 and NA114 revealed that differences in the arrangement of genomic islands, prophages and other repetitive elements in the NA114 genome are not biologically relevant and are due to misassembly. The availability of a high quality uropathogenic E. coli ST131 genome provides a reference for understanding this multidrug resistant pathogen and will facilitate novel functional, comparative and clinical studies of the E. coli ST131 clonal lineage.
Resumo:
Inherited genetic traits co-determine the susceptibility of an individual to a toxic chemical. Special emphasis has been put on individual responses to environmental and industrial carcinogens, but other chronic diseases are of increasing interest. Polymorphisms of relevant xenobiotic metabolising enzymes may be used as toxicological susceptibility markers. A growing number of genes encoding enzymes involved in biotransformation of toxicants and in cellular defence against toxicant-induced damage to the cells has been identified and cloned, leading to increased knowledge of allelic variants of genes and genetic defects that may result in a differential susceptibility toward environmental toxicants. "Low penetrating" polymorphisms in metabolism genes tend to be much more common in the population than allelic variants of "high penetrating" cancer genes, and are therefore of considerable importance from a public health point of view. Positive associations between cancer and CYP1A1 alleles, in particular the *2C I462V allele, were found for tissues following the aerodigestive tract. Again, in most cases, the effect of the variant CYP1A1 allele becomes apparent or clearer in connection with the GSTM1 null allele. The CYP1B1 codon 432 polymorphism (CYP1B1*3) has been identified as a susceptibility factor in smoking-related head-and-neck squameous cell cancer. The impact of this polymorphic variant of CYP1B1 on cancer risk was also reflected by an association with the frequency of somatic mutations of the p53 gene. Combined genotype analysis of CYP1B1 and the glutathione transferases GSTM1 or GSTT1 has also pointed to interactive effects. Of particular interest for the industrial and environmental field is the isozyme CYP2E1. Several genotypes of this isozyme have been characterised which seem to be associated with different levels of expression of enzyme activity. The acetylator status for NAT2 can be determined by genotyping or by phenotyping. In the pathogenesis of human bladder cancer due to occupational exposure to "classical" aromatic amines (benzidine, 4-aminodiphenyl, 1-naphthylamine) acetylation by NAT2 is regarded as a detoxication step. Interestingly, the underlying European findings of a higher susceptibility of slow acetylators towards aromatic amines are in contrast to findings in Chinese workers occupationally exposed to aromatic amines which points to different mechanisms of susceptibility between European and Chinese populations. Regarding human bladder cancer, the hypothesis has been put forward that genetic polymorphism of GSTM1 might be linked with the occurrence of this tumour type. This supports the hypothesis that exposure to PAH might causally be involved in urothelial cancers. The human polymorphic GST catalysing conjugation of halomethanes, dihalomethanes, ethylene oxide and a number of other industrial compounds could be characterised as a class theta enzyme (GSTT1) by means of molecular biology. "Conjugator" and "non-conjugator" phenotypes are coincident with the presence and absence of the GSTT1 gene. There are wide variations in the frequencies of GSTT1 deletion (GSTT1 *0/0) among different ethnicities. Human phenotyping is facilitated by the GST activity towards methyl bromide or ethylene oxide in erythrocytes which is representative of the metabolic GSTT1 competence of the entire organism. Inter-individual variations in xenobiotic metabolism capacities may be due to polymorphisms of the genes coding for the enzymes themselves or of the genes coding for the receptors or transcription factors which regulate the expression of the enzymes. Also, polymorphisms in several regions of genes may cause altered ligand affinity, transactivation activity or expression levels of the receptor subsequently influencing the expression of the downstream target genes. Studies of individual susceptibility to toxicants and gene-environment interaction are now emerging as an important component of molecular epidemiology.
Resumo:
Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.
Resumo:
DNA double-strand breaks (DSBs), which are induced by either endogenous metabolic processes or by exogenous sources, are one of the most critical DNA lesions with respect to survival and preservation of genomic integrity. An early response to the induction of DSBs is phosphorylation of the H2A histone variant, H2AX, at the serine-139 residue, in the highly conserved C-terminal SQEY motif, forming gammaH2AX(1). Following induction of DSBs, H2AX is rapidly phosphorylated by the phosphatidyl-inosito 3-kinase (PIKK) family of proteins, ataxia telangiectasia mutated (ATM), DNA-protein kinase catalytic subunit and ATM and RAD3-related (ATR)(2). Typically, only a few base-pairs (bp) are implicated in a DSB, however, there is significant signal amplification, given the importance of chromatin modifications in DNA damage signalling and repair. Phosphorylation of H2AX mediated predominantly by ATM spreads to adjacent areas of chromatin, affecting approximately 0.03% of total cellular H2AX per DSB(2,3). This corresponds to phosphorylation of approximately 2000 H2AX molecules spanning approximately 2 Mbp regions of chromatin surrounding the site of the DSB and results in the formation of discrete gammaH2AX foci which can be easily visualized and quantitated by immunofluorescence microscopy(2). The loss of gammaH2AX at DSB reflects repair, however, there is some controversy as to what defines complete repair of DSBs; it has been proposed that rejoining of both strands of DNA is adequate however, it has also been suggested that re-instatement of the original chromatin state of compaction is necessary(4-8). The disappearence of gammaH2AX involves at least in part, dephosphorylation by phosphatases, phosphatase 2A and phosphatase 4C(5,6). Further, removal of gammaH2AX by redistribution involving histone exchange with H2A.Z has been implicated(7,8). Importantly, the quantitative analysis of gammaH2AX foci has led to a wide range of applications in medical and nuclear research. Here, we demonstrate the most commonly used immunofluorescence method for evaluation of initial DNA damage by detection and quantitation of gammaH2AX foci in gamma-irradiated adherent human keratinocytes(9)