653 resultados para Nanorod morphologies
Resumo:
BACKGROUND The pathogenesis of full-thickness tears of the rotator cuff remains unclear. Apart from age and trauma, distinct scapular morphologies have been found to be associated with rotator cuff disease. The purpose of the present study was to evaluate whether a score formed using these established risk factors was able to predict the presence of a rotator cuff tear reliably. METHODS We retrospectively assessed a consecutive series of patients with a minimal age of 40 years old, who had true antero-posterior (AP) radiographs of their shoulders, as well as a magnetic resonance (MR) gadolinium-arthrography, between January and December 2011. In all of these patients, the critical shoulder angle (CSA) was determined, and MR images were assessed for the presence of rotator cuff tears. Additionally, the patients' charts were reviewed to obtain details of symptom onset. Based on these factors, the so-called rotator cuff tear (RCT) score was calculated. RESULTS Patients with full-thickness RCTs were significantly older and had significantly larger CSAs than patients with intact rotator cuffs. Multiple logistic regression, using trauma, age and CSA as independent variables, revealed areas under the curve (AUCs) for trauma of 0.55, for age of 0.65 and for CSA of 0.86. The combination of all three factors was the most powerful predictor, with an AUC of 0.92. CONCLUSION Age, trauma and the CSA can accurately predict the presence of a posterosuperior RCT. LEVEL OF EVIDENCE Level IV. Case series with no comparison groups.
Resumo:
Hellas basin is a large impact basin situated in the southern highlands of Mars. The north-western part of the basin has the lowest elevation (-7.5 km) on the planet and contains a possibly unique terrain type, which we informally call “banded terrain”. The banded terrain is made up of smooth-looking banded deposits that display signs of viscous behavior and a paucity of superimposed impact craters. In this study, we use newly acquired high spatial resolution images from the High Resolution Imaging Science Experiment (HiRISE) in addition to existing datasets to characterize the geomorphology, the morphometry and the architecture of the banded terrain. The banded terrain is generally confined to the NW edge of the Alpheus Colles plateau. The individual bands are ~3–15 km-long, ~0.3 km-wide and are separated by narrow inter-band depressions, which are ~65 m-wide and ~10 m-deep. The bands display several morphologies that vary from linear to concentric forms. Morphometric analysis reveals that the slopes along a given linear or lobate band ranges from 0.5° to 15° (average~6°), whereas the concentric bands are located on flatter terrain (average slope~2–3°). Crater-size frequency analysis yields an Amazonian-Hesperian boundary crater retention age for the terrain (~3 Gyr), which together, with the presence of very few degraded craters, either implies a recent emplacement, resurfacing, or intense erosion. The apparent sensitivity to local topography and preference for concentrating in localized depressions is compatible with deformation as a viscous fluid. In addition, the bands display clear signs of degradation and slumping at their margins along with a suite of other features that include fractured mounds, polygonal cracks at variable size-scales, and knobby/hummocky textures. Together, these features suggest an ice-rich composition for at least the upper layers of the terrain, which is currently being heavily modified through loss of ice and intense weathering, possibly by wind.
Resumo:
PURPOSE To determine whether particulate debris is present in periprosthetic tissue from revised Dynesys(®) devices, and if present, elicits a biological tissue reaction. METHODS Five Dynesys(®) dynamic stabilization systems consisting of pedicle screws (Ti alloy), polycarbonate-urethane (PCU) spacers and a polyethylene-terephthalate (PET) cord were explanted for pain and screw loosening after a mean of 2.86 years (1.9-5.3 years). Optical microscopy and scanning electron microscopy were used to evaluate wear, deformation and surface damage, and attenuated total reflectance Fourier transform infrared spectroscopy to assess surface chemical composition of the spacers. Periprosthetic tissue morphology and wear debris were determined using light microscopy, and PCU and PET wear debris by polarized light microscopy. RESULTS All implants had surface damage on the PCU spacers consistent with scratches and plastic deformation; 3 of 5 exhibited abrasive wear zones. In addition to fraying of the outer fibers of the PET cords in five implants, one case also evidenced cord fracture. The pedicle screws were unremarkable. Patient periprosthetic tissues around the three implants with visible PCU damage contained wear debris and a corresponding macrophage infiltration. For the patient revised for cord fracture, the tissues also contained large wear particles (>10 μm) and giant cells. Tissues from the other two patients showed comparable morphologies consisting of dense fibrous tissue with no inflammation or wear debris. CONCLUSIONS This is the first study to evaluate wear accumulation and local tissue responses for explanted Dynesys(®) devices. Polymer wear debris and an associated foreign-body macrophage response were observed in three of five cases.
Resumo:
Question: The intervertebral disc (IVD) has a limited regenerative potential and low back pain represents a leading cause of disability [1]. IVD repair strategies require an appropriate cell source that is able to regenerate the damaged tissue such as progenitor stem cells. Recently, progenitor cells that are positive for the angiopoietin re- ceptor (Tie2) in the nucleus pulposus were identified [2]. Here we isolated primary cells from bovine IVD and sorted bovine nucleus pulposus progenitor cells (NPPC) for the marker Tie2. Furthermorewe tested whether Tie2 expressing cells can differentiate into os- teogenic and adipogenic lineages in vitro. Methods: NP cells were obtained from 1 year old bovine tails by sequential digestion with pronase for 1 h and collagenase over- night. Sorted Tie2- and Tie2+ cells were cultured in osteogenic and adipogenic medium for 3 weeks. The formed cell layers from both subpopulations were stained for calcium deposition and fat droplets. Colony forming units were prepared for both cell sus- pensions in methylcellulose-based medium and formed colonies ([10 cells) were analyzed macroscopically after 8 days. Results: After 3 weeks of culture, sorted Tie2+ cells were able to differentiate into osteocytes and adipocytes as characterized by cal- cium deposition and fat droplet formation. By contrast, Tie2- cells generated a weak staining for calcium and no fat droplets were ob- tained (Fig. 1). Sorted Tie2- and Tie2+ subpopulations of cells both formed colonies, however with different morphologies. The colonies formed from Tie2+ cells were spheroid in shape whereas those from Tie2- cells were spread and fibroblastic. Conclusion: Our data showed that Tie2+ cells of the nucleus pul- posus cells are progenitor-like cells that are able to differentiate into osteogenic and adipogenic lineages. Sorting of NPPC for Tie2 may represent a promising strategy with the potential to be used in the clinics for treatment of intervertebral disc damage. References 1. Freemont AJ (2009) The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology (Oxford) 48:5–10 2. Sakai D, Nakamura Y, Nakai T et al (2012) Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat Commun 3:1264 Acknowledgments: This project was funded by two projects of the Swiss National Science Foundation grant number #IZK0Z3_154384 and #310030_153411.
Resumo:
The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.
Resumo:
The precise arraying of functional entities in morphologically well-defined shapes remains one of the key challenges in the processing of organic molecules1. Among various π-conjugated species, pyrene exhibits a set of unique properties, which make it an attractive compound for the utilization in materials science2. In this contribution we report on properties of self-assembled structures prepared from amphiphilic pyrene trimers (Py3) consisting of phosphodiester-linked pyrenes. Depending on the geometry of a pyrene core substitution (1.6-, 1.8-, or 2.7- type, see Scheme), the thermally-controlled self-assembly allows the preparation of supramolecular architectures of different morphologies in a bottom-up approach: two-dimensional (2D) nanosheets3 are formed in case of 1.6- and 2.7-substitution4 whereas one-dimensional (1D) fibers are built from 1.8- substituted isomers. The morphologies of the assemblies are established by AFM and TEM, and the results are further correlated with spectroscopic and scattering data. Two-dimensional assemblies consist of an inner layer of hydrophobic pyrenes, sandwiched between a net of phosphates. Due to the repulsion of the negative charges, the 2D assemblies exist mostly as free-standing sheets. An internal alignment of pyrenes leads to strong exciton coupling with an unprecedented observation (simultaneous development of J- and H-bands from two different electronic transitions). Despite the similarity in spectroscopic properties, the structural parameters of the 2D aggregates drastically depend on the preparation procedure. Under certain conditions extra-large sheets (thickness of 2 nm, aspect ratio area/thickness ~107) in aqueous solution are formed4B. Finally, one-dimensional assemblies are formed as micrometer-long and nanometer-thick fibers. Both, planar and linear structures are intriguing objects for the creation of conductive nanowires that may find interest for applications in supramolecular electronics.
Resumo:
The correspondence of the state of alignment of macromolecules in biomimetic materials and natural tissues is demonstrated by investigating a mechanism of electrical polarity formation: An in vitro grown biomimetic FAp/gelatin composite is investigated for its polar properties by second harmonic (SHGM) and scanning pyroelectric microscopy (SPEM). Hexagonal prismatic seed crystals formed in gelatin gels represent a monodomain polar state, due to aligned mineralized gelatin molecules. Later growth stages, showing dumbbell morphologies, develop into a bipolar state because of surface recognition by gelatin functionality: A reversal of the polar alignment of macromolecules, thus, takes place close to that basal plane of the seed. In natural hard tissues (teeth and bone investigated by SPEM) and the biomimetic FAp/gelatin composite, we find a surprising analogy in view of growth-induced states of polarity: The development of polarity in vivo and in vitro can be explained by a Markov-type mechanism of molecular recognition during the attachment of macromolecules.
Resumo:
Context. Since August 2014, the OSIRIS Narrow Angle Camera (NAC) onboard the Rosetta spacecraft has acquired high spatial resolution images of the nucleus of comet 67P/Churyumov-Gerasimenko, down to the decimeter scale. This paper focuses on the Imhotep region, located on the largest lobe of the nucleus, near the equator. Aims. We map, inventory, and describe the geomorphology of the Imhotep region. We propose and discuss some processes to explain the formation and ongoing evolution of this region. Methods. We used OSIRIS NAC images, gravitational heights and slopes, and digital terrain models to map and measure the morphologies of Imhotep. Results. The Imhotep region presents a wide variety of terrains and morphologies: smooth and rocky terrains, bright areas, linear features, roundish features, and boulders. Gravity processes such as mass wasting and collapse play a significant role in the geomorphological evolution of this region. Cometary processes initiate erosion and are responsible for the formation of degassing conduits that are revealed by elevated roundish features on the surface. We also propose a scenario for the formation and evolution of the Imhotep region; this implies the presence of large primordial voids inside the nucleus, resulting from its formation process.
Resumo:
Aims. We study the link between gravitational slopes and the surface morphology on the nucleus of comet 67P/Churyumov-Gerasimenko and provide constraints on the mechanical properties of the cometary material (tensile, shear, and compressive strengths). Methods. We computed the gravitational slopes for five regions on the nucleus that are representative of the different morphologies observed on the surface (Imhotep, Ash, Seth, Hathor, and Agilkia), using two shape models computed from OSIRIS images by the stereo-photoclinometry (SPC) and stereo-photogrammetry (SPG) techniques. We estimated the tensile, shear, and compressive strengths using different surface morphologies (overhangs, collapsed structures, boulders, cliffs, and Philae's footprint) and mechanical considerations. Results. The different regions show a similar general pattern in terms of the relation between gravitational slopes and terrain morphology: i) low-slope terrains (0-20 degrees) are covered by a fine material and contain a few large (>10 m) and isolated boulders; ii) intermediate-slope terrains (20-45 degrees) are mainly fallen consolidated materials and debris fields, with numerous intermediate-size boulders from <1m to 10m for the majority of them; and iii) high-slope terrains (45-90 degrees) are cliffs that expose a consolidated material and do not show boulders or fine materials. The best range for the tensile strength of overhangs is 3-15 Pa (upper limit of 150 Pa), 4-30 Pa for the shear strength of fine surface materials and boulders, and 30-150 Pa for the compressive strength of overhangs (upper limit of 1500 Pa). The strength-to-gravity ratio is similar for 67P and weak rocks on Earth. As a result of the low compressive strength, the interior of the nucleus may have been compressed sufficiently to initiate diagenesis, which could have contributed to the formation of layers. Our value for the tensile strength is comparable to that of dust aggregates formed by gravitational instability and tends to favor a formation of comets by the accrection of pebbles at low velocities.
Resumo:
An abrupt global warming of 3-4°C occurred near the end of the Maastrichtian at 65.45-65.10 Ma. The environmental effects of this warm event are here documented based on stable isotopes and quantitative analysis of planktonic foraminifera at the South Atlantic DSDP Site 525A. Stable isotopes of individual species mark a rapid increase in temperature and a reduction in the vertical water mass stratification that is accompanied by a decrease in niche habitats, reduced species diversity and/or abundance, smaller species morphologies or dwarfing, and reduced photosymbiotic activity. During the warm event, the relative abundance of a large number of species decreased, including tropical-subtropical affiliated species, whereas typical mid-latitude species retained high abundances. This indicates that climate warming did not create favorable conditions for all tropical-subtropical species at mid-latitudes and did not cause a massive retreat in the local mid-latitude population. A noticeable exception is the ecological generalist Heterohelix dentata Stenestad that dominated during the cool intervals, but significantly decreased during the warm event. However, dwarfing is the most striking response to the abrupt warming and occurred in various species of different morphologies and lineages (e.g. biserial, trochospiral, keeled globotruncanids). Dwarfing is a typical reaction to environmental stress conditions and was likely the result of increased reproduction rates. Similarly, photosymbiotic activity appears to have been reduced significantly during the maximum warming, as indicated by decreased delta13C values. The foraminiferal response to climate change is thus multifaceted resulting in decreased species diversity, decreased species populations, increased competition due to reduced niche habitats, dwarfing and reduced photosymbiotic activity.
Resumo:
Targeted sampling on the Dolgovskoy Mound (northern Shatsky Ridge) revealed the presence of spectacular laterally extensive and differently shaped authigenic carbonates. The sampling stations were selected based on sidescan sonar and profiler images that show patchy backscatter and irregular and discontinuous reflections in the near subsurface. The interpretation of acoustic data from the top part of the mound supports the seafloor observations and the sampling that revealed the presence of a complex subsurface plumbing system characterized by carbonates and gas. The crusts sampled consist of carbonate cemented layered hemipelagic sedimentary Unit 1 associated with several centimetres thick microbial mats. Three different carbonate morphologies were observed: (a) tabular slabs, (b) subsurface cavernous carbonates consisting of void chambers up to 20 cm**3 in size and (c) chimney and tubular conduits vertically oriented or forming a subhorizontal network in the subsurface. The methanogenic origin of the carbonates is established based on visual observations of fluids seepage structures, 13C depletion of the carbonates (d13C varying between -36.7 per mil and -27.4 per mil), and by thin carbonate layers present within the thick microbial mats. Laboratory experiments with a Hele-Shaw cell were conducted in order to simulate the gas seepage through contrasting grain size media present on the seafloor. Combined petrography, visual observations and sandbox simulations allowed a characterization of the dynamics and the structures of the plumbing system in the near subsurface. Based on sample observations and the experiments, three observed morphologies of authigenic carbonates are interpreted, respectively, as (a) Darcian porous flow through the finely laminated clayey/coccolith-rich layers, (b) gas accumulation chambers at sites where significant fluid escape was impeded by thicker clayey layers forming the laminated Unit1 and (c) focussed vertical fluid venting and subhorizontal migration of overpressured fluids released from (b). The Hele-Shaw cell experiments represent a promising tool for investigating shallow fluid flow pathways in marine systems.
Resumo:
The Menez Gwen hydrothermal vents, located on the flanks of a small young volcanic structure in the axial valley of the Menez Gwen seamount, are the shallowest known vent systems on the Mid-Atlantic Ridge that host chemosynthetic communities. Although visited several times by research cruises, very few images have been published of the active sites, and their spatial dimensions and morphologies remain difficult to comprehend. We visited the vents on the eastern flank of the small Menez Gwen volcano during cruises with RV Poseidon (POS402, 2010) and RV Meteor (M82/3, 2010), and used new bathymetry and imagery data to provide first detailed information on the extents, surface morphologies, spatial patterns of the hydrothermal discharge and the distribution of dominant megafauna of five active sites. The investigated sites were mostly covered by soft sediments and abundant white precipitates, and bordered by basaltic pillows. The hydrothermally-influenced areas of the sites ranged from 59 to 200 m**2. Geo-referenced photomosaics and video data revealed that the symbiotic mussel Bathymodiolus azoricus was the dominant species and present at all sites. Using literature data on average body sizes and biomasses of Menez Gwen B. azoricus, we estimated that the B. azoricus populations inhabiting the eastern flank sites of the small volcano range between 28,640 and 50,120 individuals with a total biomass of 50 to 380 kg wet weight. Based on modeled rates of chemical consumption by the symbionts, the annual methane and sulfide consumption by B. azoricus could reach 1760 mol CH4 yr**-1 and 11,060 mol H2S yr**-1. We propose that the chemical consumption by B. azoricus over at the Menez Gwen sites is low compared to the natural release of methane and sulfide via venting fluids.
Resumo:
Los dibujos animados norteamericanos, sigilosamente, han ido ocupando un lugar cada vez más relevante en la industria cultural. Tanto es así, que hoy se pueden discriminar canales específicamente destinados a la animación y, a su vez, series de animaciones producidas para diversos públicos: niños, adolescentes y adultos. Frente a esta gran cantidad y diversidad de textos llama especialmente mi atención la convivencia de contrapuestos sistemas de valor. Numerosas tiras de dibujos animados, dirigidos especialmente a los niños, ayudan a conformar el gusto infantil contemporáneo (en el sentido de Calabrese) que no responde a un único sistema unificador de valores. Es decir, lo feo o lindo, lo malo o bueno, lo conforme o informe, lo disfórico o eufórico no está dictaminado hoy por un solo discurso axiológico imperante. En este escrito pretendo describir, desde una perspectiva semiótica, las particularidades que resultan de la coexistencia de morfologías, éticas y tímicas distintas. Para ello, me detendré en un grupo de cartoons que se presentan como las antípodas de los tradicionales y conocidos textos audiovisuales de Disney y de las clásicas y exitosas series animadas de la Warner Bross o la Metro Goldywn Mayer. Estas creaciones buscaron exhibir, desde su nacimiento, estabilidad en las formas, armonía cromática y uniformidad de comportamientos. Contrariamente, los mundos posibles que hoy también integran el universo de dibujos animados, evidencian lo que Calabrese denomina el placer de lo impreciso, lo indefinido, lo vago y lo ambiguo. Estas representaciones sincréticas exaltan notorias diferencias en sus homologaciones axiológicas liberándose de las pretensiones de perfección, tanto de sus escenarios como de sus actores figurativos: seres híbridos, animales aversivos, niños nefastos, criaturas deformes y escenarios difusos son algunas de las características que definen a los últimas producciones animadas para televisión.
Resumo:
Due to its strong gradient in salinity and small temperature gradient the Mediterranean provides an ideal setting to study the impact of salinity on the incorporation of Mg into foraminiferal tests. We have investigated tests of Globorotalia inflata and Globigerina bulloides in plankton tow and core top samples from the Western Mediterranean using ICP-OES for bulk analyses and LA-ICP-MS for analyses of individual chambers in single specimens. Mg/Ca observed in G. inflata are consistent with existing calibrations, whereas G. bulloides had significantly higher Mg/Ca than predicted, particularly in core top samples from the easterly stations. Scanning Electron Microscopy and Laser Ablation ICP-MS revealed secondary overgrowths on some tests, which could explain the observed high core top Mg/Ca. We suggest that the Mediterranean intermediate and deep water supersaturated with respect to calcite cause these overgrowths and therefore increased bulk Mg/Ca. However, the different species are influenced by diagenesis to different degrees probably due to different test morphologies. Our results provide new perspectives on reported anomalously high Mg/Ca in sedimentary foraminifera and the applicability of the Mg/Ca paleothermometry in high salinity settings, by showing that (1) part of the signal is generated by precipitation of inorganic calcite on the foraminifer test due to increased calcite saturation state of the water and (2) species with high surface-to-volume shell surfaces are potentially more affected by secondary Mg-rich calcite encrustation.