967 resultados para NORMAL HUMAN FIBROBLASTS
Resumo:
The EF-hand superfamily of calcium binding proteins includes the S100, calcium binding protein, and troponin subfamilies. This study represents a genome, structure, and expression analysis of the S100 protein family, in mouse, human, and rat. We confirm the high level of conservation between mammalian sequences but show that four members, including S100A12, are present only in the human genome. We describe three new members of the S100 family in the three species and their locations within the S100 genomic clusters and propose a revised nomenclature and phylogenetic relationship between members of the EF-hand superfamily. Two of the three new genes were induced in bone-marrow-derived macrophages activated with bacterial lipopolysaccharide, suggesting a role in inflammation. Normal human and murine tissue distribution profiles indicate that some members of the family are expressed in a specific manner, whereas others are more ubiquitous. Structure-function analysis of the chemotactic properties of murine S100A8 and human S100A12, particularly within the active hinge domain, suggests that the human protein is the functional homolog of the murine protein. Strong similarities between the promoter regions of human S100A12 and murine S100A8 support this possibility. This study provides insights into the possible processes of evolution of the EF-hand protein superfamily. Evolution of the S100 proteins appears to have occurred in a modular fashion, also seen in other protein families such as the C2H2-type zinc-finger family. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Chemokine (C-C motif) ligand-2 (CCL2) is a chemoattractant and activator of macrophages and is a key determinant of the macrophage infiltrate into tumours. We demonstrate here that CCL2 is expressed in normal human ovarian surface epithelium ( HOSE) cells and is silenced in most ovarian cancer cell lines, and silenced or downregulated in the majority of primary ovarian adenocarcinomas. Analysis of the CCL2 locus at 17q11.2-q12 showed loss of heterozygosity (LOH) in 70% of primary tumours, and this was significantly more common in tumours of advanced stage or grade. However, we did not detect any mutations in the CCL2 coding sequence in 94 primary ovarian adenocarcinomas. These data support the hypothesis that CCL2 may play a role in the pathobiology of ovarian cancers, but additional studies will be required to evaluate this possibility.
Resumo:
The total number of nephrons in normal human kidneys varies over a 10-fold range. This variation in total nephron number leads us to question whether low nephron number increases the risk of renal disease in adulthood. This review considers the available evidence in humans linking low nephron number/reduced nephron endowment and the susceptibility to renal disease. Total nephron number in humans has been directly correlated with birth weight and inversely correlated with age, mean glomerular volume, and hypertension. Low nephron number may be the result of suboptimal nephrogenesis during kidney development and/or loss of nephrons once nephrogenesis has been completed. Low nephron number is frequently, but not always, associated with hypertrophy of remaining glomeruli. This compensatory hypertrophy has also been associated with a greater susceptibility for kidney disease. Three human studies have reported reduced nelphron number in subjects with a history of hypertension. This correlation has been observed in White Europeans, White Americans (but not African Americans) and Australian Aborigines. Studies in additional populations are required, as well as a greater understanding of the fetal environmental and genetic determinants of low nephron number.
Resumo:
Selenium binding protein I (SELENBP1) was identified to be the most significantly down-regulated protein in ovarian cancer cells by a membrane proteome profiling analysis. SELENBP1 expression levels in 4 normal ovaries, 8 benign ovarian tumors, 12 borderline ovarian tumors and 141 invasive ovarian cancers were analyzed with immunohistochemical assay. SELENBP1 expression was reduced in 87% cases of invasive ovarian cancer (122/141) and was significantly reduced in borderline tumors and invasive cancers (p < 0.001). Cox multivariate analysis within the 141 invasive cancer tissues showed that SELENBP1 expression score was a potential prognostic indicator for unfavorable prognosis of ovarian cancer (hazard ratio [HR], 2.18; 95% CI = L22-190; p = 0.009). Selenium can disrupt the androgen pathway, which has been implicated in modulating SELENBP1 expression. We investigated the effects of selenium and androgen on normal human ovarian surrace epithelial (HOSE) cells and cancer cells. Interestingly, SELENBP1 mRNA and protein levels were reduced by androgen and elevated by selenium treatment in the normal HOSE cells, whereas reversed responses were observed in the ovarian cancer cell lines. These results suggest that changes of SELENBP1 expression in malignant ovarian cancer are an indicator of aberration of selenium/androgen pathways and may reveal prognostic information of ovarian cancer. (c) 2005 Wiley-Liss, Inc.
Resumo:
Context: Genes from the ovarian bone morphogenetic signaling pathway (GDF9 and BMP15) are critical for normal human fertility. We previously identified a deletion mutation in GDF9 in sisters with spontaneous dizygotic (DZ) twins, but the prevalence of rare GDF9 variants in twinning families is unknown. Objective: The objective was to evaluate the frequency of rare variants in GDF9 in families with a history of DZ twinning. Design and Subjects: We recruited 3450 individuals from 915 DZ twinning families (1693 mothers of twins) and 1512 controls of Caucasian origin. One mother of DZ twins was selected from 279 of the 915 families, and a DNA sample was screened for rare variants in GDF9 using denaturant HPLC. Variants were confirmed by DNA sequencing and genotyped in the entire sample by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. Results: We found two novel insertion/deletions (c.392-393insT, c.1268-1269delAA) and four missense alterations in the GDF9 sequence in mothers of twins. Two of the missense variants (c.307C > T, p.Pro103Ser and c.362C > T, p.Thr121Leu) were located in the proregion of GDF9 and two (c.1121C > T, p.Pro374Leu and c.1360C > T, p.Arg454Cys) in the mature protein region. For each variant, the frequencies were higher in cases compared with controls. The proportion of mothers of DZ twins carrying any variant (4.12%) was significantly higher (P < 0.0001) than the proportion of carriers in controls (2.29%). Conclusion: We describe new variants in the GDF9 gene that are significantly more common in mothers of DZ twins than controls, suggesting that rare GDF9 variants contribute to the likelihood of DZ twinning.
Resumo:
Sensação de ansiedade é algo comum que faz parte da vivencia do ser humano, é caracterizado por um sentimento difuso, é vago de apreensão e muitas vezes desagradável que podem vir acompanhado por sintomas autonômicos como, por exemplo, palpitações, cefaleia, dor no peito e um leve desconforto abdominal. E nos idosos essa ansiedade pode atrapalhar as funções cognitivas, e com isso agravar doenças físicas. Este trabalho teve como objetivo avaliar a ocorrência de sintomas de ansiedade dos idosos que frequentam centros de convivência e correlacionar estes níveis de ansiedade com a qualidade de vida dos idosos diante das atividades cotidianas que desenvolvem. A metodologia adotada foi pesquisa de campo exploratória quantitativa. Foram avaliados 85 indivíduos, com idade media de 67,91± 7,24 anos, sendo 64 (75,3%) do gênero feminino e 21 (24,7%) do masculino. Os resultados mostraram que a ocorrência de sintomas de ansiedade nos idosos é moderada. Isso não significa dizer que os idosos apresentam algum transtorno de ansiedade, pois este estudo buscou verificar a ansiedade não patológica, ou seja, a que é normal do ser humano. Mas mesmo assim é interessante compreender as causas dessa ansiedade investigando os sintomas mais frequentes com o objetivo de criar projetos mais direcionados a essa situação. Fazendo uma correlação de todas as variáveis pode-se considerar que a amostra apresenta-se em um ótimo estado de saúde.
Resumo:
Improved methods of insulin delivery are required for the treatment of insulin-dependent diabetes mellitus (IDDM) to achieve a more physiological profile of glucose homeostasis. Somatic cell gene therapy offers the prospect that insulin could be delivered by an autologous cell implant, engineered to secrete insulin in response to glucose. This study explores the feasibility of manipulating somatic cells to behave as a surrogate insulin-secreting β-cells. Initial studies were conducted using mouse pituitary AtT20 cells as a model, since these cells possess an endogenous complement of enzymes capable of processing proinsulin to mature insulin. Glucose sensitive insulin secretion was conferred to these cells by transfection with plasmids containing the human preproinsulin gene (hppI-1) and the GLUT2 gene for the glucose transporter isoform 2. Insulin secretion was responsive to changes in the glucose concentration up to about 50μM. Further studies to up-rate this glucose sensitivity into the mM range will require manipulation of the hexokinase and glucokinase enzymes. Intraperitoneal implantation of the manipulated AtT20 cells into athymic nude mice with streptozotocin-induced diabetes resulted in decreased plasma glucose concentrations. The cells formed vascularised tumours in vivo which were shown to contain insulin-secreting cells. To achieve proinsulin processing in non-endocrine cells, co-transfection with a suitable enzyme, or mutagenesis of the proinsulin itself are necessary. The mutation of the human preproinsulin gene to the consensus sequence for cleavage by the subtilisin-like serine protease, furin, was carried out. Co-transfection of human fibroblasts with wild-type proinsulin and furin resulted in 58% conversion to mature insulin by these cells. Intraperitoneal implantation of the mature-insulin secreting human fibroblasts into the diabetic nude mouse animal model gave less encouraging results than the AtT20 cells, apparently due to poor vascularisation. Cell aggregations removed from the mice at autopsy were shown to contain insulin secreting cells only at the periphery. This thesis provides evidence that it is possible to construct, by cellular engineering, a glucose-sensitive insulin-secreting surrogate β-cell. Therefore, somatic cell gene therapy offers a feasible alternative for insulin delivery in IDDM patients.
Resumo:
Previous studies in man have shown that following dosing with L--3,4-dihydroxyphenylalanine (L-DOPA) and cotrimoxazole, plasma biopterins were raised. By analogy with dihydropteridine reductase deficient children in whom plasma biopterins are greatly elevated and the observations that these preparations were dihydropteridine reductase inhibitors, it was assumed that these raised plasma levels were due to increased efflux from tissues which resulted in tissue depletion of biopterins. In some human disease states such as senile dementia of the Alzheimer type lowered plasma biopterins were observed; by analogy with tetrahydrobiopterin synthesis deficient children these reduced plasma biopterins were attributed to lowered tetrahydrobiopterin synthesis and concomitant low tissue biopterin levels. Because of ethical considerations it was not possible to measure directly the tissue biopterins changes in either case. The Wistar rat was used as a model for human tetrahydrobiopterin metabolism, since tissues not normally accessible for study in humans, such as the brain and liver, could be examined for their effects on tetrahydrobiopterin metabolism after administration of the various agents. Plasma total biopterins in normal conditions were found to be much higher than in healthy humans. The elevation of plasma total biopterins concentration following the administration of dihydropteridine reductase inhibitors to humans, such as L-DOPA and cotrimoxazole was not observed in the rat. However, the administration of inhibitors of de novo tetrahydrobiopterin biosynthesis, such as diaminohydroxypyrimidine (DAHP) and bromocriptine was shown to decrease plasma biopterins concentration. In general, hepatic biopterins were decreased after administration of both dihydropteridine reductase inhibitors and de novo biosynthesis inhibitors. Drugs which are direct (bromocriptine) or indirect (L-DOPA and Sinemet Plus) agonists at dopamine receptors were investigated and were shown to decrease hepatic total biopterins concentration, but had no effect on brain biopterins. Bromocriptine was demonstrated as a potent inhibitor of de novo tetrahydrobiopterin biosynthesis in vivo and in vitro. Cotrimoxazole decreased brain tetrahydrobiopterin concentration. DAHP was effective in causing hyperphenylalaninaemia due to tetrahydrobiopterin deficiency in the rat. p-hydroxyphenylacetate was shown to be an effective inhibitor of dihydropteridine reductase in vivo. Phenylacetate administration had no observable effect on tetrahydrobiopterin metabolism, but did cause tyrosinaemia. It is proposed that scopolamine reduces tetrahydrobiopterin turnover. Lead and aluminium exposure caused deranged tetrahydrobiopterin metabolism. Aluminium, but not lead decreased brain choline acetyltransferase activity. Phenylalanine loading in normal human subjects was followed by an elevation in plasma biopterins which was not observed after tyrosine loading. Plasma N : B ratios correlated well with VEP latencies after tyrosine loading, but not after phenylalanine loading in healthy subjects. The use of derived pterin measurements as an indicator of tetrahydrobiopterin turnover or tetrahydrofolate status is discussed in the text.
Resumo:
Tumour vasculogenesis can occur by a process referred to as vasculogenic mimicry, whereby the vascular structures are derived from the tumour itself. These tumours are highly aggressive and do not respond well to anti-angiogenic therapy. Here, we use the well characterised ECV304 cell line, now known as the bladder cancer epithelial cell line T24/83 which shows both epithelial and endothelial characteristics, as a model of in vitro vasculogenic mimicry. Using optimised ratios of co-cultures of ECV304 and C378 human fibroblasts, tubular structures were identifiable after 8 days. The tubular structures showed high levels of TG2 antigen and TG in situ activity. Tubular structures and in situ activity could be blocked either by site-directed irreversible inhibitors of TG2 or by silencing the ECV304 TG2 by antisense transfection. In situ activity for TG2 showed co-localisation with both fibronectin and collagen IV. Deposition of these proteins into the extracellular matrix could be reduced by inclusion of non-cell penetrating TG inhibitors when analysed by Western blotting suggesting that the contribution of TG2 to tube formation is extracellular. Incubation of ECV304 cells with these same irreversible inhibitors reduced cell migration which paralleled a loss in focal adhesion assembly, actin cytoskeleton formation and fibronectin deposition. TG2 appears essential for ECV304 tube formation, thus representing a potential novel therapeutic target in the inhibition of vasculogenic mimicry. © 2012 Springer-Verlag.
Resumo:
The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types. © 2012 Cartwright et al.
Resumo:
Despite intense investigation, mechanisms that facilitate the emergence of the pre-eclampsia phenotype in women are still unknown. Placental hypoxia, hypertension, proteinuria and oedema are the principal clinical features of this disease. It is speculated that hypoxia-driven disruption of the angiogenic balance involving vascular endothelial growth factor (VEGF)/placenta-derived growth factor (PLGF) and soluble Fms-like tyrosine kinase-1 (sFLT-1, the soluble form of VEGF receptor 1) might contribute to some of the maternal symptoms of pre-eclampsia. However, pre-eclampsia does not develop in all women with high sFLT-1 or low PLGF levels, and it also occurs in some women with low sFLT-1 and high PLGF levels. Moreover, recent experiments strongly suggest that several soluble factors affecting the vasculature are probably elevated because of placental hypoxia in the pre-eclamptic women, indicating that upstream molecular defect(s) may contribute to pre-eclampsia. Here we show that pregnant mice deficient in catechol-O-methyltransferase (COMT) show a pre-eclampsia-like phenotype resulting from an absence of 2-methoxyoestradiol (2-ME), a natural metabolite of oestradiol that is elevated during the third trimester of normal human pregnancy. 2-ME ameliorates all pre-eclampsia-like features without toxicity in the Comt(-/-) pregnant mice and suppresses placental hypoxia, hypoxia-inducible factor-1alpha expression and sFLT-1 elevation. The levels of COMT and 2-ME are significantly lower in women with severe pre-eclampsia. Our studies identify a genetic mouse model for pre-eclampsia and suggest that 2-ME may have utility as a plasma and urine diagnostic marker for this disease, and may also serve as a therapeutic supplement to prevent or treat this disorder.
Resumo:
The purpose of this study was to investigate the effects of 17-β-estradiol (E2)-induced reactive oxygen species (ROS) on the induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2), a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2 induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control the expression of these genes – nuclear respiratory factor-1 (NRF-1) was significantly up-regulated during the 4-OH-E2-mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2, PRC1 and PCNA, and the transcription factor – NRF-1. In summary, our study has demonstrated that: (i) 4-OH-E2 is one of the main estrogen metabolites that induce mammary tumorigenesis and (ii) ROS-mediated signaling leading to the activation of PI3K/AKT pathway plays an important role in the generation of 4-OH-E2-induced malignant phenotype of breast epithelial cells. In conclusion, ROS are important signaling molecules in the development of estrogen-induced malignant breast lesions.
Resumo:
The science of genetics is undergoing a paradigm shift. Recent discoveries, including the activity of retrotransposons, the extent of copy number variations, somatic and chromosomal mosaicism, and the nature of the epigenome as a regulator of DNA expressivity, are challenging a series of dogmas concerning the nature of the genome and the relationship between genotype and phenotype. DNA, once held to be the unchanging template of heredity, now appears subject to a good deal of environmental change; considered to be identical in all cells and tissues of the body, there is growing evidence that somatic mosaicism is the normal human condition; and treated as the sole biological agent of heritability, we now know that the epigenome, which regulates gene expressivity, can be inherited via the germline. These developments are particularly significant for behavior genetics for at least three reasons: First, these phenomena appear to be particularly prevalent in the human brain, and likely are involved in much of human behavior; second, they have important implications for the validity of heritability and gene association studies, the methodologies that largely define the discipline of behavior genetics; and third, they appear to play a critical role in development during the perinatal period, and in enabling phenotypic plasticity in offspring in particular. I examine one of the central claims to emerge from the use of heritability studies in the behavioral sciences, the principle of “minimal shared maternal effects,” in light of the growing awareness that the maternal perinatal environment is a critical venue for the exercise of adaptive phenotypic plasticity. This consideration has important implications for both developmental and evolutionary biology
Resumo:
Le syndrome de Leigh version canadienne-française (LSFC) est une maladie autosomale récessive causée par une mutation du gène LRPPRC, encodant une protéine du même nom. LRPPRC est impliquée dans la traduction des gènes mitochondriaux qui encodent certains complexes de la chaine respiratoire. Les répercussions biochimiques incluent un déficit tissu spécifique de la cytochrome c oxydase (COX), principalement dans le foie et le cerveau, et la survenue de crises d’acidose fatales chez 80 % des enfants atteints avant l’âge de 3-4 ans. L’identification d’options thérapeutiques demeure encore un défi de taille et ceci est en partie relié au manque de connaissances des fonctions biologiques de LRPPRC et des mécanismes impliqués dans la pathogenèse du LSFC, au niveau des dysfonctions mitochondriales résultantes. Afin d’étudier ces mécanismes, le consortium de l’acidose lactique, dont fait partie notre laboratoire, a récemment développé un modèle murin portant une ablation de LRPPRC spécifique au foie (souris H-Lrpprc-/-). L’objectif principal est de déterminer si ce modèle reproduit le phénotype pathologique observé dans les cultures de fibroblastes humains issus de biopsies de peau de patients LSFC. Dans le cadre des travaux de ce mémoire, nous avons amorcé la caractérisation de ce nouveau modèle, en examinant le phénotype général, l’histopathologie hépatique et les fonctions mitochondriales, et en nous focalisant principalement sur les fonctions respiratoires et la capacité à oxyder divers types de substrats. Nous avons observé un retard de croissance, une hépatomégalie ainsi que plusieurs anomalies histologiques du foie chez la souris HLrpprc-/-. De plus, l’ablation de LRPPRC induit un déficit du complexe IV, mais aussi de l’ATP synthase, et affecte l’oxydation des acides gras à longues chaines. À la lumière de ces résultats, nous croyons que le modèle murin H-Lrpprc-/- contribuera à l’avancement des connaissances générales sur LRPPRC, nous permettant de mieux comprendre l’influence de la protéine sur les fonctions mitochondriales.
Resumo:
Une caractéristique intéressante de la protéine Bcl-xL est la présence d'un domaine en boucle non-structurée entre les hélices α1 and α2 de la protéine. Ce domaine protéique n'est pas essentiel pour sa fonction anti-apoptotique et absent chez CED-9, la protéine orthologue chez Caenorhabditis elegans. A l'intérieur de ce domaine, Bcl-xL subit une phosphorylation et déphosphorylation dynamique sur les résidus Ser49 et Ser62 en phase G2 du cycle cellulaire et lors de la mitose. Lorsque ces résidus sont mutés et les protéines exprimées dans des cellules cancéreuses, les cellules démontrent plusieurs défauts mitotiques liés à l'instabilité chromosomique. Pour analyser les effets de Bcl-xL Ser49 et Ser62 dans les cellules normales, les présentes études ont été réalisées dans des cellules diploïdes humaines normales, et in vivo chez Caenorhabditis elegans. Dans une première étude, nous avons utilisé la lignée cellulaire de cellules fibroblastiques diploïdes humaines normales BJ, exprimant Bcl-xL (type sauvage), (S49A), (S49D), (S62A), (S62D) et les double (S49/62A) et (S49/62D) mutants. Les cellules exprimant les mutants de phosphorylation ont montré des cinétiques de doublement de la population cellulaire réduites. Ces effets sur la cinétique de doublement de la population cellulaire corrèle avec l'apparition de la sénescence cellulaire, sans impact sur les taux de mort cellulaire. Ces cellules sénescentes affichent des phénotypes typiques de sénescence associés notamment à haut niveau de l'activité β-galactosidase associée à la sénescence, la sécrétion d' interleukine-6, l'activation de p53 et de p21WAF1/ Cip1, un inhibiteur des complexes kinase cycline-dépendant, ainsi que la formation de foyers de chromatine nucléaire associés à γH2A.X. Les analyses de fluorescence par hybridation in situ et des caryotypes par coloration au Giemsa ont révélé que l'expression des mutants de phosphorylation de Bcl-xL provoquent de l'instabilité chromosomique et l'aneuploïdie. Ces résultats suggèrent que les cycles de phosphorylation et déphosphorylation dynamiques de Bcl-xL Ser49 et Ser62 sont importants dans le maintien de l'intégrité des chromosomes lors de la mitose dans les cellules normales. Dans une deuxième étude, nous avons entrepris des expériences chez Caenorhabditis elegans pour comprendre l'importance des résidus Ser49 et Ser62 de Bcl-xL in vivo. Les vers transgéniques portant les mutations de Bcl-xL (S49A, S62A, S49D, S62D et S49/62A) ont été générés et leurs effets ont été analysés sur les cellules germinales des jeunes vers adultes. Les vers portant les mutations de Bcl-xL ont montré une diminution de ponte et d'éclosion des oeufs, des variations de la longueur de leurs régions mitotiques et des zones de transition, des anomalies chromosomiques à leur stade de diplotène, et une augmentation de l'apoptose des cellules germinales. Certaines de ces souches transgéniques, en particulier les variants Ser/Ala, ont également montré des variations de durée de vie par rapport aux vers témoins. Ces observations in vivo ont confirmé l'importance de Ser49 et Ser62 à l'intérieur du domaine à boucle de Bcl-xL pour le maintien de la stabilité chromosomique. Ces études auront une incidence sur les futures stratégies visant à développer et à identifier des composés qui pourraient cibler non seulement le domaine anti-apoptotique de la protéine Bcl-xL, mais aussi son domaine mitotique pour la thérapie du cancer.