987 resultados para NITROGEN UPTAKE
Resumo:
Subtropical estuaries have received comparatively little attention in the study of nutrient loading and subsequent nutrient processing relative to temperate estuaries. Australian estuaries are particularly susceptible to increased nutrient loading and eutrophication, as 75% of the population resides within 200 km of the coastline. We assessed the factors potentially limiting both biomass and production in one Australian estuary, Moreton Bay, through stoichiometric comparisons of nitrogen (N), phosphorus (P), silicon (Si), and carbon (C) concentrations, particulate compositions, and rates of uptake. Samples were collected over 3 seasons in 1997-1998 at stations located throughout the bay system, including one riverine endmember site. Concentrations of all dissolved nutrients, as well as particulate nutrients and chlorophyll, declined 10-fold to 100-fold from the impacted western embayments to the eastern, more oceanic-influenced regions of the bay during all seasons. For all seasons and all regions, both the dissolved nutrients and particulate biomass yielded N : P ratios < 6 and N : Si ratios < 1. Both relationships suggest strong limitation of biomass by N throughout the bay. Limitation of rates of nutrient uptake and productivity were more complex. Low C : N and C : P uptake ratios at the riverine site suggested light limitation at all seasons, low N : P ratios suggested some degree of N limitation and high N : Si uptake ratios in austral winter suggested Si limitation of uptake during that season only. No evidence of P limitation of biomass or productivity was evident.
Resumo:
We investigated how species identity and variation in salinity and nutrient availability influence the hydraulic conductivity of mangroves. Using a fertilization study of two species in Florida, we found that stem hydraulic conductivity expressed on a leaf area basis (K-leaf) was significantly different among species of differing salinity tolerance, but was not significantly altered by enrichment with limiting nutrients. Reviewing data from two additional sites (Panama and Belize), we found an overall pattern of declining leaf-specific hydraulic conductivity (K-leaf) with increasing salinity. Over three sites, a general pattern emerges, indicating that native stem hydraulic conductivity (K-h) and K-leaf are less sensitive to nitrogen (N) fertilization when N limits growth, but more sensitive to phosphorus (P) fertilization when P limits growth. Processes leading to growth enhancement with N fertilization are probably associated with changes in allocation to leaf area and photosynthetic processes, whereas water uptake and transport processes could be more limiting when P limits growth. These findings suggest that whereas salinity and species identity place broad bounds on hydraulic conductivity, the effects of nutrient availability modulate hydraulic conductivity and growth in complex ways.
Resumo:
Land disposal is commonly used for urban and industrial wastewater, largely due to the high costs involved in alternative treatments or disposal systems. However, the viability of such systems depends on many factors, including the composition of the effluent water, soil type, the plant species grown, growth rate, and planting density. The objective of this study is to establish whether land disposal of nitrogen (N) rich effluent using an agroforestry system is sustainable, and determine the effect of irrigation rate and tree planting density on the N cycle and subsequent N removal. We examined systems for the sustainable disposal of a high strength industrial effluent. The challenge was to leach the salt, by using a sufficiently high rate of irrigation, while simultaneously ensuring that N did not leach from the soil profile. We describe the N balance for two plant systems irrigated with effluent, one comprising Eucalyptus tereticornis and Eucalyptus moluccana and a Rhodes grass (Chloris gayana) pasture, and the other, Rhodes grass pasture alone. Nitrogen balance was assessed from N inputs in effluent and rainfall, accumulation of N in the plant biomass, changes in soil N storage, N loss in run-off water, denitrification and N loss to the groundwater by deep-drainage. Biomass production was estimated from allometric relationships derived from yearly destructive harvesting of selected trees. The N content of that biomass was then calculated from measured N content of the various plant parts, and their mass. Approximately 300 kg N/ha/yr was assimilated into tree biomass at a planting density of 2500 tree/ha of E. moluccana. In addition to tree assimilation, pasture growth between the tree rows, which was regularly harvested, contributed substantially to N uptake. If the trees were harvested after two years of growth and grass harvested regularly, biomass removal of N by the mixed system would be about 700 kg N/ha/yr. The results of this study show that the current system of effluent disposal is not sustainable as the nitrate leaching from the soil profile far exceeds standards set out by the ANZECC guidelines. Hence additional means of N removal will need to be implemented. Biological N removal is an area that warrants further studies as it is aimed at reducing N levels in the effluent before irrigation. This will complement the current agroforestry system.
Resumo:
The incubation of murine leukaemic L1210 cells in vitro for 4 hours (hr) with 10uM nitrogen mustard (HN2), a bifunctional alkylating agent, inhibited the influx of the potassium congener, 88rubidium+ ( 86Rb+) by the selective inhibition of the Na+-K+-CI- cotransporter. The aim of this project was to investigate the importance of this lesion in HN2-induced cytotoxicity. 86Rb+ uptake in human erythrocytes was inhibited by high concentrations of HN2 (2mM) and occurred in two phases.In the first hour both the Na+/K+ ATPase pump and the Na+-K+-CI- cotransporter were equally inhibited but after 2 hrs exposure to 2mM HN2, the Na+ -K+ -CI- cotransporter was significantly more inhibited than the Na+/K+ ATPase pump. In contrast, both potassium transport systems were equally inhibited in L1210 cells incubated for 10 minutes with 1mM HN2. The selective inhibition of the Na+-K+-CI- cotransporter, after a 3 hrs exposure to 10uM HN2, was not absolved by coincubation with 5ug/ml cycloheximide (CHX), an inhibitor of protein synthesis. Incubation of L1210 cells with concentrations of diuretics which completely inhibited Na+-K+-CI- cotransport did not enhance the cytotoxicity of either HN2 or its monofunctional analogue 2-chloroethyldimethylamine (Me-HN1). The incubation of L1210 cells with a twice strength Rosewell Park Memorial Institute 1640 media did not enhance the toxicity of HN2. An L1210 cell line (L1210FR) was prepared which was able to grow in toxic concentrations of furosemide and exhibited a similiar sensitivity to HN2 as parental L1210 cells. Treatment of L1210 cells with 10uM HN2 resulted in a decrease in cell volume which was concurrent with the inhibition of the Na+-K+-CI- cotransporter. This was not observed in L1210 cells treated with either 1 or O.SuM HN2. Thus, possible differences in the cell death, in terms of necrosis and apoptosis, induced by the different concentrations of HN2 was investigated. The cell cycle of L1210 cells appeared to be blocked non-specifically by 10uM HN2 and in S and G2/M by either 1 or 0.5uM HN2. There were no significant changes in the cytosolic calcium concentrations of L1210 cells for up to 48 hrs after exposure to the three concentrations of HN2. No protection against th_ toxic effects of HN2 was observed in L1210 cells incubated with 5ug/ml CHX for up to 6 hrs. Incubation for 12 or 18 hrs with a non-toxic concentration (5mM) of L-Azetidine-2- carboxylic acid (ACA) enhanced the toxicity of low concentrations (<0.5uM) of HN2.
Resumo:
Water management has altered both the natural timing and volume of freshwater delivered to Everglades National Park. This is especially true for Taylor Slough and the C-111 basin, as hypersaline events in Florida Bay have been linked to reduced freshwater flow in this area. In light of recent efforts to restore historical flows to the eastern Everglades, an understanding of the impact of this hydrologic shift is needed in order to predict the trajectory of restoration. I conducted a study to assess the importance of season, water chemistry, and hydrologic conditions on the exchange of nutrients in dwarf and fringe mangrove wetlands along Taylor Slough. I also performed mangrove leaf decomposition studies to determine the contribution of biotic and abiotic processes to mass loss, the effect of salinity and season on degradation rates, and the importance of this litter component as a rapid source of nutrients. ^ Dwarf mangrove wetlands consistently imported total nutrients (C, N, and P) and released NO2− +NO3 −, with enhanced release during the dry season. Ammonium flux shifted from uptake to release over the study period. Dissolved phosphate activity was difficult to discern in either wetland, as concentrations were often below detection limits. Fluxes of dissolved inorganic nitrogen in the fringe wetland were positively related to DIN concentrations. The opposite was found for total nitrogen in the fringe wetland. A dynamic budget revealed a net annual export of TN to Florida Bay that was highest during the wet season. Simulated increases and decreases in freshwater flow yielded reduced exports of TN to Florida Bay as a result of changes in subsystem and water flux characteristics. Finally, abiotic processes yielded substantial nutrient and mass losses from senesced leaves with little influence of salinity. Dwarf mangrove leaf litter appeared to be a considerable source of nutrients to the water column of this highly oligotrophic wetland. To summarize, nutrient dynamics at the subsystem level were sensitive to short-term changes in hydrologic and seasonal conditions. These findings suggest that increased freshwater flow has the potential to lead to long-term, system-level changes that may reach as far as eastern Florida Bay. ^
Resumo:
In the Florida Everglades, tree islands are conspicuous heterogeneous elements in the herbaceous wetland landscape. We characterized the biogeochemical role of a seasonally flooded tree island during wet season inundation, specifically examining hydrologically mediated flows of nitrogen (N) and N retention by the tree island. We estimated ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic fluxes of N to quantify the net ecosystem N mass flux. Results showed that hydrologic sources of N were dominated by surface water loads of nitrate (NO3) and ammonium (NH4). Nitrate immobilization by soils and surficial leaf litter was an important sink for surface water dissolved inorganic N (DIN). We estimated that the net annual DIN retention by a seasonally flooded tree island was 20.5 ± 5.0 g m−2 during wet season inundation. Based on the estimated tree island surface water DIN loading rate, a seasonally flooded tree island retained 76% of imported DIN. As such, seasonally flooded tree islands have the potential to retain 55% of DIN entering the marsh landscape via upstream canal overland flow in the wet season. By increasing reactive surface area and DOC availability, we suggest that tree islands promote convergence of elements that enhance DIN retention. Tree islands of this region are thus important components of landscape-scale restoration efforts that seek to reduce sources of anthropogenic DIN to downstream estuaries.
Resumo:
Dissolution of anthropogenic CO(2) increases the partial pressure of CO(2) (pCO(2)) and decreases the pH of seawater. The rate of Fe uptake by the dominant N(2)-fixing cyanobacterium Trichodesmium declines as pH decreases in metal-buffered medium. The slower Fe-uptake rate at low pH results from changes in Fe chemistry and not from a physiological response of the organism. Contrary to previous observations in nutrient-replete media, increasing pCO(2)/decreasing pH causes a decrease in the rates of N(2) fixation and growth in Trichodesmium under low-Fe conditions. This result was obtained even though the bioavailability of Fe was maintained at a constant level by increasing the total Fe concentration at low pH. Short-term experiments in which pCO(2) and pH were varied independently showed that the decrease in N(2) fixation is caused by decreasing pH rather than by increasing pCO(2) and corresponds to a lower efficiency of the nitrogenase enzyme. To compensate partially for the loss of N(2) fixation efficiency at low pH, Trichodesmium synthesizes additional nitrogenase. This increase comes partly at the cost of down-regulation of Fe-containing photosynthetic proteins. Our results show that although increasing pCO(2) often is beneficial to photosynthetic marine organisms, the concurrent decreasing pH can affect primary producers negatively. Such negative effects can occur both through chemical mechanisms, such as the bioavailability of key nutrients like Fe, and through biological mechanisms, as shown by the decrease in N(2) fixation in Fe-limited Trichodesmium.
Resumo:
The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT(8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT(7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification.
Resumo:
Parameters of provision of the phytoplankton community with inorganic nitrogen compounds in the western Black Sea in April 1993 are analyzed (specifically, dependence of rates of uptake of nitrates and ammonium by microplankton on substrate concentration, diurnal dynamics of assimilation of mineral nitrogen, values of f-ratios, and proportions of carbon and nitrogen fluxes). In most cases all the parameters of degree of phytoplankton provision with mineral nitrogen are shown to vary unidirectionally, both at the surface and in the photosynthesis zone. Individual areas of a relatively small region studied differed markedly in their level of provision of algae with inorganic nitrogen compounds - from complete saturation to high degree of limitation of phytoplankton development due to nitrogen deficiency in the environment. Obtained results allow to estimate provision of Black Sea phytoplankton with nitrogen in terms of limitation of rates of uptake of its inorganic compounds.
Resumo:
Along with increasing oceanic CO2 concentrations, enhanced stratification constrains phytoplankton to shallower upper mixed layers with altered light regimes and nutrient concentrations. Here, we investigate the effects of elevated pCO2 in combination with light or nitrogen-limitation on 13C fractionation (epsilon p) in four dinoflagellate species. We cultured Gonyaulax spinifera and Protoceratium reticulatum in dilute batches under low-light (LL) and high-light (HL) conditions, and grew Alexandrium fundyense and Scrippsiella trochoidea in nitrogen-limited continuous cultures (LN) and nitrogen-replete batches (HN). The observed CO2-dependency of epsilon p remained unaffected by the availability of light for both G. spinifera and P. reticulatum, though at HL epsilon p was consistently lower by about 2.7 per mil over the tested CO2 range for P. reticulatum. This may reflect increased uptake of (13C-enriched) bicarbonate fueled by increased ATP production under HL conditions. The observed CO2-dependency of epsilon p disappeared under LN conditions in both A. fundyense and S. trochoidea. The generally higher epsilon p under LN may be associated with lower organic carbon production rates and/or higher ATP:NADPH ratios. CO2-dependent epsilon p under non-limiting conditions has been observed in several dinoflagellate species, showing potential for a new CO2-proxy. Our results however demonstrate that light- and nitrogen-limitation also affect epsilon p, thereby illustrating the need to carefully consider prevailing environmental conditions.
Resumo:
Like all high yielding farming systems nitrogen (N) is a key component to their productivity and profitability and Australian irrigated cotton growers are tending to apply more N than is required for the level of lint yield that is being achieved. This suggests either over application of N or inefficient systems limiting the response of cotton to N inputs. To investigate this four replicated trials were established in commercial fields during the 2014/15 season. The trials were aiming to measure the difference in response of irrigated cotton to the application of N under flood and overhead irrigation systems. The application treatments utilized eight upfront rates of applied N, ranging from 0 N kg/ha to a maximum of 410 kg N/ha, with three of the fours trials receiving a growerdetermined in-crop application of N in the irrigation water. The two flood irrigation systems had lower lint yields from similar levels of N input compared to one of the overhead irrigated sites; the result from the second overhead site was impacted by disease. This paper discusses the response of plant N uptake, lint yield and fertilizer N recovery to N application..
Resumo:
Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using N-15 pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67 degrees N) to steppe (54 degrees N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest.
Resumo:
Nitrogen (N) is an essential plant nutrient in maize production, and if considering only natural sources, is often the limiting factor world-wide in terms of a plant’s grain yield. For this reason, many farmers around the world supplement available soil N with synthetic man-made forms. Years of over-application of N fertilizer have led to increased N in groundwater and streams due to leaching and run-off from agricultural sites. In the Midwest Corn Belt much of this excess N eventually makes its way to the Gulf of Mexico leading to eutrophication (increase of phytoplankton) and a hypoxic (reduced oxygen) dead zone. Growing concerns about these types of problems and desire for greater input use efficiency have led to demand for crops with improved N use efficiency (NUE) to allow reduced N fertilizer application rates and subsequently lower N pollution. It is well known that roots are responsible for N uptake by plants, but it is relatively unknown how root architecture affects this ability. This research was conducted to better understand the influence of root complexity (RC) in maize on a plant’s response to N stress as well as the influence of RC on other above-ground plant traits. Thirty-one above-ground plant traits were measured for 64 recombinant inbred lines (RILs) from the intermated B73 & Mo17 (IBM) population and their backcrosses (BCs) to either parent, B73 and Mo17, under normal (182 kg N ha-1) and N deficient (0 kg N ha-1) conditions. The RILs were selected based on results from an earlier experiment by Novais et al. (2011) which screened 232 RILs from the IBM to obtain their root complexity measurements. The 64 selected RILs were comprised of 31 of the lowest complexity RILs (RC1) and 33 of the highest complexity RILs (RC2) in terms of root architecture (characterized as fractal dimensions). The use of the parental BCs classifies the experiment as Design III, an experimental design developed by Comstock and Robinson (1952) which allows for estimation of dominance significance and level. Of the 31 traits measured, 12 were whole plant traits chosen due to their documented response to N stress. The other 19 traits were ear traits commonly measured for their influence on yield. Results showed that genotypes from RC1 and RC2 significantly differ for several above-ground phenotypes. We also observed a difference in the number and magnitude of N treatment responses between the two RC classes. Differences in phenotypic trait correlations and their change in response to N were also observed between the RC classes. RC did not seem to have a strong correlation with calculated NUE (ΔYield/ΔN). Quantitative genetic analysis utilizing the Design III experimental design revealed significant dominance effects acting on several traits as well as changes in significance and dominance level between N treatments. Several QTL were mapped for 26 of the 31 traits and significant N effects were observed across the majority of the genome for some N stress indicative traits (e.g. stay-green). This research and related projects are essential to a better understanding of plant N uptake and metabolism. Understanding these processes is a necessary step in the progress towards the goal of breeding for better NUE crops.
Resumo:
Interactions between photosynthetic and non-photosynthetic microorganisms play an essential role in natural aquatic environments and the contribution of bacteria and microalgae to the nitrogen cycle can lead to both competitive and mutualistic relationships. Nitrogen is considered to be, with phosphorus and iron, one of the main limiting nutrients for primary production in the oceans and its availability experiences large temporal and geographical variations. For these reasons, it is important to understand how competitive and mutualistic interactions between photosynthetic and heterotrophic microorganisms are impacted by nitrogen limitation. In a previous study performed in batch cultures, the addition of a selected bacterial strain of Alteromonas sp. resulted in a final biomass increase in the green alga Dunaliella sp. as a result of higher nitrogen incorporation into the algal cells. The present work focuses on testing the potential of the same microalgae–bacteria association and nitrogen interactions in chemostats limited by nitrogen. Axenic and mixed cultures were compared at two dilution rates to evaluate the impact of nitrogen limitation on interactions. The addition of bacteria resulted in increased cell size in the microalgae, as well as decreased carbon incorporation, which was exacerbated by high nitrogen limitation. Biochemical analyses for the different components including microalgae, bacteria, non-living particulate matter, and dissolved organic matter, suggested that bacteria uptake carbon from carbon-rich particulate matter released by microalgae. Dissolved organic nitrogen released by microalgae was apparently not taken up by bacteria, which casts doubt on the remineralization of dissolved organic nitrogen by Alteromonas sp. in chemostats. Dunaliella sp. obtained ammonium-nitrogen more efficiently under lower nitrogen limitation. Overall, we revealed competition between microalgae and bacteria for ammonium when this was in continuous but limited supply. Competition for mineral nitrogen increased with nitrogen limitation. From our study we suggest that competitive or mutualistic relationships between microalgae and bacteria largely depend on the ecophysiological status of the two microorganisms. The outcome of microalgae–bacteria interactions in natural and artificial ecosystems largely depends on environmental factors. Our results indicate the need to improve understanding of the interaction/s between these microbial players
Resumo:
The kinetics of metal uptake by gel and dry calcium alginate beads was analysed using solutions of copper or lead ions. Gel beads sorbed metal ions faster than the dry ones and larger diffusivities of metal ions were calculated for gel beads: approximately 10−4 cm2/min vs. 10−6 cm2/min for dry beads. In accordance, scanning electron microscopy and nitrogen adsorption data revealed a low porosity of dry alginate particles. However, dry beads showed higher sorption capacities and a mechanical stability more suitable for large-scale use. Two sorption models were fitted to the kinetic results: the Lagergren pseudo-first order and the Ho and McKay pseudo-second order equations. The former was found to be the most adequate to model metal uptake by dry alginate beads and kinetic constants in the orders of 10−3 and 10−2 min−1 were obtained for lead solutions with concentrations up to 100 g/m3. The pseudo-first order model was also found to be valid to describe biosorbent operation with a real wastewater indicating that it can be used to design processes of metal sorption with alginate-based materials.