908 resultados para Mustafa <Kara>Mustafa <Kara>
Resumo:
Processes of early sediment diagenesis, including chemical composition of interstitial waters, content of different sulfur compounds, and rates of sulfate reduction were investigated. Along a profile from the Yenisey River to the Kara Sea, sulfate reduction intensities were high (up to 1.5 µg S/kg/day) in the delta region and in its northern part. Intensities were comparable to those found in shallow-water sediments of the North Sea. In estuarine sediments, where different transformations were possible, lower rates of bacterial sulfate reduction were observed (0.03 to 0.06 µg S/kg/day). Annual production of reduced sulfur in sediments was 24 million tons, and only 0.5 million tons (2%) were deposited. Annual consumption of organic carbon during process of sulfate reduction in the Yenisey delta region was 17.6 million tons.
Resumo:
In this paper, we summarize data on terrigenous sediment supply in the Kara Sea and its accumulation and spatial and temporal variability during Holocene times. Sedimentological, organic-geochemical, and micropaleontological proxies determined in surface sediments allow to characterize the modern (riverine) terrigenous sediment input. AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the terrigenous sediment fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 cal kyr BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge. Based on sediment thickness charts, echograph profiles and sediment core data, we estimate an average Holocene (0-11 cal kyr BP) annual accumulation of 194,106 t/yr of total sediment for the whole Kara Sea. Based on late Holocene (modern) sediment accumulation in the estuaries, probably 12,106 t/yr of riverine suspended matter (i.e. about 30% of the input) may escape the marginal filter on a geological time scale and is transported onto the open Kara Sea shelf. The high-resolution magnetic susceptibility record of a Yenisei core suggests a short-term variability in Siberian climate and river discharge on a frequency of 300-700 yr. This variability may reflect natural cyclic climate variations to be seen in context with the interannual and interdecadal environmental changes recorded in the High Northern Latitudes over the last decades, such as the NAO/AO pattern. A major decrease in MS values starting near 2.5 cal kyr BP, being more pronounced during the last about 2 cal kyr BP, correlates with a cooling trend over Greenland as indicated in the GISP-2 Ice Core, extended sea-ice cover in the North Atlantic, and advances of glaciers in western Norway. Our still preliminary interpretation of the MS variability has to be proven by further MS records from additional cores as well as other high-resolution multi-proxy Arctic climate records.
Resumo:
During Cruise 49 of R/V Dmitry Mendeleev in the Kara Sea (August-September, 1993) chemical-bitumenological studies of bottom sediments were carried out. Hydrocarbons were analyzed by gas-liquid chromatography. It was found on the basis of distribution of n-alkanes and isoprenoids (pristan and phytan) that organic matter is mainly terrigenous consisting of higher plant remains.
Resumo:
Vertical fluxes of autochtonous detritus at different levels were estimated using the algorithm of structure-function analysis. The calculations are based on pelagic ecosystem parameters in the Kara Sea observed in September 1993 (temperature, primary production, biomass of phytoplankton, bacteria, protozoa, and zooplankton, trophic and size composition, etc.). At eight stations in different parts of the sea where sedimentation traps were set, the range of calculated fluxes of autochtonous detritus through the lower boundary of the water column was 13-90 mgC/m**2/day. The flux was much higher in the estuary of the Yenisey River (55-90 mgC/m**2/day) than in the northeastern regions (I8-50 mgC/m**2/day) and, especially, in the relatively deep southwestern part of the sea (13-35 mgC/m**2/day). The calculated fluxes of autochtonous detritus in shallow water regions (where conditions are variable and poorly known hydrologically and where outflow of allochtonous detritus is substantial) cannot be compared to data from sedimentation traps.