916 resultados para Muscle Glycogen
Resumo:
We compared the extent and origin of muscle fatigue induced by short-pulse-low-frequency [conventional (CONV)] and wide-pulse-high-frequency (WPHF) neuromuscular electrical stimulation. We expected CONV contractions to mainly originate from depolarization of axonal terminal branches (spatially determined muscle fiber recruitment) and WPHF contractions to be partly produced via a central pathway (motor unit recruitment according to size principle). Greater neuromuscular fatigue was, therefore, expected following CONV compared with WPHF. Fourteen healthy subjects underwent 20 WPHF (1 ms-100 Hz) and CONV (50 μs-25 Hz) evoked isometric triceps surae contractions (work/rest periods 20:40 s) at an initial target of 10% of maximal voluntary contraction (MVC) force. Force-time integral of the 20 evoked contractions (FTI) was used as main index of muscle fatigue; MVC force loss was also quantified. Central and peripheral fatigue were assessed by voluntary activation level and paired stimulation amplitudes, respectively. FTI in WPHF was significantly lower than in CONV (21,717 ± 11,541 vs. 37,958 ± 9,898 N·s P<0,001). The reductions in MVC force (WPHF: -7.0 ± 2.7%; CONV: -6.2 ± 2.5%; P < 0.01) and paired stimulation amplitude (WPHF: -8.0 ± 4.0%; CONV: -7.4 ± 6.1%; P < 0.001) were similar between conditions, whereas no change was observed for voluntary activation level (P > 0.05). Overall, our results showed a different motor unit recruitment pattern between the two neuromuscular electrical stimulation modalities with a lower FTI indicating greater muscle fatigue for WPHF, possibly limiting the presumed benefits for rehabilitation programs.
Resumo:
PURPOSE: The effects of β(2)-agonists on human skeletal muscle contractile properties, particularly on slow fibers, are unclear. Moreover, it remains to be ascertained whether central motor drive (CMD) during voluntary contractions could counter for eventual contractile alterations induced by β(2)-agonists. This study investigated central and peripheral neuromuscular adjustments induced by β(2)-agonist terbutaline on a predominantly slow human muscle, the soleus. METHODS: Ten recreationally active men ingested either a single dose of 8 mg of terbutaline or placebo in a randomized double-blind order (two experimental sessions). Isometric plantarflexion torque was measured during single and tetanic (10 and 100 Hz) stimulations as well as during submaximal and maximal voluntary contractions (MVC). Twitch peak torque and half-relaxation time were calculated. CMD was estimated via soleus electromyographic recordings obtained during voluntary contractions performed at approximately 50% MVC. RESULTS: MVC and twitch peak torque were not modified by terbutaline. Twitch half-relaxation time was 28% shorter after terbutaline administration compared with placebo (P < 0.001). Tetanic torques at 10 and 100 Hz were significantly lower after terbutaline intake compared with placebo (-40% and -24% respectively, P < 0.001). Despite comparable torque of submaximal voluntary contractions in the two conditions, CMD was 7% higher after terbutaline ingestion compared with placebo (P < 0.01). CONCLUSION: These results provide evidence that terbutaline modulates the contractility of the slow soleus muscle and suggest that the increased CMD during submaximal contractions may be viewed as a compensatory adjustment of the central nervous system to counter the weakening action induced by terbutaline on the contractile function of slow muscle fibers.
Resumo:
Smad3 is a key intracellular signaling mediator for both transforming growth factor-β and myostatin, two major regulators of skeletal muscle growth. Previous published work has revealed pronounced muscle atrophy together with impaired satellite cell functionality in Smad3-null muscles. In the present study, we have further validated a role for Smad3 signaling in skeletal muscle regeneration. Here, we show that Smad3-null mice had incomplete recovery of muscle weight and myofiber size after muscle injury. Histological/immunohistochemical analysis suggested impaired inflammatory response and reduced number of activated myoblasts during the early stages of muscle regeneration in the tibialis anterior muscle of Smad3-null mice. Nascent myofibers formed after muscle injury were also reduced in number. Moreover, Smad3-null regenerated muscle had decreased oxidative enzyme activity and impaired mitochondrial biogenesis, evident by the downregulation of the gene encoding mitochondrial transcription factor A, a master regulator of mitochondrial biogenesis. Consistent with known Smad3 function, reduced fibrotic tissue formation was also seen in regenerated Smad3-null muscle. In conclusion, Smad3 deficiency leads to impaired muscle regeneration, which underscores an essential role of Smad3 in postnatal myogenesis. Given the negative role of myostatin during muscle regeneration, the increased expression of myostatin observed in Smad3-null muscle may contribute to the regeneration defects.
Resumo:
Glycogen synthase 2 (Gys-2) is the ratelimiting enzyme in the storage of glycogen in liver and adipose tissue, yet little is known about regulation of Gys-2 transcription. The peroxisome proliferator-activated receptors (PPARs) are transcription factors involved in the regulation of lipid and glucose metabolism and might be hypothesized to govern glycogen synthesis as well. Here, we show that Gys-2 is a direct target gene of PPARalpha, PPARbeta/delta and PPARgamma. Expression of Gys-2 is significantly reduced in adipose tissue of PPARalpha-/-, PPARbeta/delta-/- and PPARgamma+/- mice. Furthermore, synthetic PPARbeta/delta, and gamma agonists markedly up-regulate Gys-2 mRNA and protein expression in mouse 3T3-L1 adipocytes. In liver, PPARalpha deletion leads to decreased glycogen levels in the refed state, which is paralleled by decreased expression of Gys-2 in fasted and refed state. Two putative PPAR response elements (PPREs) were identified in the mouse Gys-2 gene: one in the upstream promoter (DR-1prom) and one in intron 1 (DR-1int). It is shown that DR-1int is the response element for PPARs, while DR-1prom is the response element for Hepatic Nuclear Factor 4 alpha (HNF4alpha). In adipose tissue, which does not express HNF4alpha, DR-1prom is occupied by PPARbeta/delta and PPARgamma, yet binding does not translate into transcriptional activation of Gys-2. Overall, we conclude that mouse Gys-2 is a novel PPAR target gene and that transactivation by PPARs and HNF4alpha is mediated by two distinct response elements.
Resumo:
OBJECTIVE: To evaluate the results of Muller's muscle-conjunctival resection for correction of blepharoptosis and to discuss the advantages of this procedure. METHODS: 38 patients (39 eyelids) were submitted to Muller's muscle-conjunctival resection. Blepharoptosis varied from 1.0 mm to 3.0 mm (mean: 2.0 mm). The amount of eyelid elevation produced by phenylephrine guided the amount of tissue to be resected. RESULT: 33 eyelids (85%) treated with this procedure were cosmetically acceptable. CONCLUSIONS: Muller's muscle-conjunctival resection procedure is a relatively simple technique for blepharoptosis, with good levator function and positive 10% phenylephrine test. The advantages are: preservation of tarsus and predictable results.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.
Resumo:
Purpose: Heterogeneous results of single studies with photodynamic diagnosis (PDD) in bladder cancer have been reported. A metaanalysis of prospective studies has now been performed. Material and Methods: The effect of PDD in addition to WLC on a) the diagnosis and b) the therapeutic outcome of primary or recurrent non-muscle invasive bladder cancer (NMIBC) investigated by cystoscopy or transurethral resection was analysed. An electronic database search was performed. Trials were included if they prospectively compared WLC with PDD in bladder cancer. Primary endpoints were additional detection rate, residual tumour at second resection and recurrence-free survival. Results: Significantly more tumour-positive patients were detected with PDD in all patients with non-muscle invasive tumours (= 20%) [95% confidence interval (CI): 8 to 35%] and in CIS patients (= 39%) (CI: 23 to 57%). Residual tumour was significantly less often found after PDD (odds ratio 0.28, CI: 0.15 to 0.52, p<0.0001). Recurrence-free survival was significantly higher at 12 and 24months in the PDD groups than in WLC only groups. Conclusions: More bladder tumour-positive patients are detected by PDD. Best results were found in CIS patients. Diagnosis with PDD results in a more complete resection and a longer recurrence-free survival.
Resumo:
The only currently available method to measure brain glycogen in vivo is 13C NMR spectroscopy. Incorporation of 13C-labeled glucose (Glc) is necessary to allow glycogen measurement, but might be affected by turnover changes. Our aim was to measure glycogen absolute concentration in the rat brain by eliminating label turnover as variable. The approach is based on establishing an increased, constant 13C isotopic enrichment (IE). 13C-Glc infusion is then performed at the IE of brain glycogen. As glycogen IE cannot be assessed in vivo, we validated that it can be inferred from that of N-acetyl-aspartate IE in vivo: After [1-13C]-Glc ingestion, glycogen IE was 2.2 +/- 0.1 fold that of N-acetyl-aspartate (n = 11, R(2) = 0.77). After subsequent Glc infusion, glycogen IE equaled brain Glc IE (n = 6, paired t-test, p = 0.37), implying isotopic steady-state achievement and complete turnover of the glycogen molecule. Glycogen concentration measured in vivo by 13C NMR (mean +/- SD: 5.8 +/- 0.7 micromol/g) was in excellent agreement with that in vitro (6.4 +/- 0.6 micromol/g, n = 5). When insulin was administered, the stability of glycogen concentration was analogous to previous biochemical measurements implying that glycogen turnover is activated by insulin. We conclude that the entire glycogen molecule is turned over and that insulin activates glycogen turnover.
Resumo:
CONTEXT: Controversy exists regarding the therapeutic benefit and cost effectiveness of photodynamic diagnosis (PDD) with 5-aminolevulinic acid (5-ALA) or hexyl aminolevulinate (HAL) in addition to white-light cystoscopy (WLC) in the management of non-muscle-invasive bladder cancer (NMIBC). OBJECTIVE: To systematically evaluate evidence regarding the therapeutic benefits and economic considerations of PDD in NMIBC detection and treatment. EVIDENCE ACQUISITION: We performed a critical review of PubMed/Medline, Embase, and the Cochrane Library in October 2012 according to the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement. Identified reports were reviewed according to the Consolidated Standards of Reporting Trials (CONSORT) and Standards for the Reporting of Diagnostic Accuracy Studies (STARD) criteria. Forty-four publications were selected for inclusion in this analysis. EVIDENCE SYNTHESIS: Included reports used 5-ALA (in 26 studies), HAL (15 studies), or both (three studies) as photosensitising agents. PDD increased the detection of both papillary tumours (by 7-29%) and flat carcinoma in situ (CIS; by 25-30%) and reduced the rate of residual tumours after transurethral resection of bladder tumour (TURBT; by an average of 20%) compared to WLC alone. Superior recurrence-free survival (RFS) rates and prolonged RFS intervals were reported for PDD, compared to WLC in most studies. PDD did not appear to reduce disease progression. Our findings are limited by tumour heterogeneity and a lack of NMIBC risk stratification in many reports or adjustment for intravesical therapy use in most studies. Although cost effectiveness has been demonstrated for 5-ALA, it has not been studied for HAL. CONCLUSIONS: Moderately strong evidence exists that PDD improves tumour detection and reduces residual disease after TURBT compared with WLC. This has been shown to improve RFS but not progression to more advanced disease. Further work to evaluate cost effectiveness of PDD is required.
Resumo:
Aims/hypothesis We assessed systemic and local muscle fuel metabolism during aerobic exercise in patients with type I diabetes at euglycaemia and hyperglycaemia with identical insulin levels.Methods This was a single-blinded randomised crossover study at a university diabetes unit in Switzerland. We studied seven physically active men with type I diabetes (mean +/- SEM age 33.5 +/- 2.4 years, diabetes duration 20.1 +/- 3.6 years, HbA(1c) 6.7 +/- 0.2% and peak oxygen uptake [VO2peak] 50.3 +/- 4.5 ml min(-1) kg(-1)). Men were studied twice while cycling for 120 min at 55 to 60% of VO2peak, with a blood glucose level randomly set either at 5 or 11 mmol/l and identical insulinaemia. The participants were blinded to the glycaemic level; allocation concealment was by opaque, sealed envelopes. Magnetic resonance spectroscopy was used to quantify intramyocellular glycogen and lipids before and after exercise. Indirect calorimetry and measurement of stable isotopes and counter-regulatory hormones complemented the assessment of local and systemic fuel metabolism.Results The contribution of lipid oxidation to overall energy metabolism was higher in euglycaemia than in hyperglycaemia (49.4 +/- 4.8 vs 30.6 +/- 4.2%; p<0.05). Carbohydrate oxidation accounted for 48.2 +/- 4.7 and 66.6 +/- 4.2% of total energy expenditure in euglycaemia and hyperglycaemia, respectively (p<0.05). The level of intramyocellular glycogen before exercise was higher in hyperglycaemia than in euglycaemia (3.4 +/- 0.3 vs 2.7 +/- 0.2 arbitrary units [AU]; p<0.05). Absolute glycogen consumption tended to be higher in hyperglycaemia than in euglycaemia (1.3 +/- 0.3 vs 0.9 +/- 0.1 AU). Cortisol and growth hormone increased more strongly in euglycaemia than in hyperglycaemia (levels at the end of exercise 634 52 vs 501 +/- 32 nmol/l and 15.5 +/- 4.5 vs 7.4 +/- 2.0 ng/ml, respectively; p<0.05).Conclusions/interpretation Substrate oxidation in type I diabetic patients performing aerobic exercise in euglycaemia is similar to that in healthy individuals revealing a shift towards lipid oxidation during exercise. In hyperglycaemia fuel metabolism in these patients is dominated by carbohydrate oxidation. Intramyocellular glycogen was not spared in hyperglycaemia.
Resumo:
Abstract Leiomyosarcomas are rare malignant neoplasms. Intracranial metastases of this tumour are even less frequently observed and have mostly been described from uterine leiomyosarcomas. In this article, we describe the case of a single right frontal subcortical cerebral metastasis in a patient with a right triceps muscle leiomyosarcoma. A right-sided frontal craniotomy with macroscopically complete tumour removal was performed, followed by combined radio-chemotherapy. The patient died 10 months after the initial diagnosis of the intracranial metastasis due to systemic tumour progression, without any evidence of intracranial recurrence.
Resumo:
Genetically homogenous C57Bl/6 mice display differential metabolic adaptation when fed a high fat diet for 9 months. Most become obese and diabetic, but a significant fraction remains lean and diabetic or lean and non-diabetic. Here, we performed microarray analysis of "metabolic" transcripts expressed in liver and hindlimb muscles to evaluate: (i) whether expressed transcript patterns could indicate changes in metabolic pathways associated with the different phenotypes, (ii) how these changes differed from the early metabolic adaptation to short term high fat feeding, and (iii) whether gene classifiers could be established that were characteristic of each metabolic phenotype. Our data indicate that obesity/diabetes was associated with preserved hepatic lipogenic gene expression and increased plasma levels of very low density lipoprotein and, in muscle, with an increase in lipoprotein lipase gene expression. This suggests increased muscle fatty acid uptake, which may favor insulin resistance. In contrast, the lean mice showed a strong reduction in the expression of hepatic lipogenic genes, in particular of Scd-1, a gene linked to sensitivity to diet-induced obesity; the lean and non-diabetic mice presented an additional increased expression of eNos in liver. After 1 week of high fat feeding the liver gene expression pattern was distinct from that seen at 9 months in any of the three mouse groups, thus indicating progressive establishment of the different phenotypes. Strikingly, development of the obese phenotype involved re-expression of Scd-1 and other lipogenic genes. Finally, gene classifiers could be established that were characteristic of each metabolic phenotype. Together, these data suggest that epigenetic mechanisms influence gene expression patterns and metabolic fates.
Resumo:
Summary : With regard to exercise metabolism, lactate was long considered as a dead-end waste product responsible for muscle fatigue and a limiting factor for motor performance. However, a large body of evidence clearly indicates that lactate is an energy efficient metabolite able to link the glycolytic pathway with aerobic metabolism and has endocrine-like actions, rather than to be a dead-end waste product. Lactate metabolism is also known to be quickly upregulated by regular endurance training and is thought to be related to exercise performance. However, to what extent its modulation can increase exercise performance in already endurance-trained subjects is unknown. The general hypothesis of this work was therefore that increasing either lactate metabolic clearance rate or lactate availability could, in turn, increase endurance performance. The first study (Study I) aimed at increasing the lactate clearance rate by means of assumed interaction effects of endurance training and hypoxia on lactate metabolism and endurance performance. Although this study did not demonstrate any interaction of training and hypoxia on both lactate metabolism and endurance performance, a significant deleterious effect of endurance training in hypoxia was shown on glucose homeostasis. The methods used to determine lactate kinetics during exercise exhibited some limitations, and the second study did delineate some of the issues raised (Study 2). The third study (Study 3) investigated the metabolic and performance effects of increasing plasma lactate production and availability during prolonged exercise in the fed state. A nutritional intervention was used for this purpose: part of glucose feedings ingested during the control condition was substituted by fructose. The results of this study showed a significant increase of lactate turnover rate, quantified the metabolic fate of fructose; and demonstrated a significant decrease of lipid oxidation and glycogen breakdown. In contrast, endurance performance appeared to be unmodified by this dietary intervention, being at odds with recent reports. Altogether the results of this thesis suggest that in endurance athletes the relationship between endurance performance and lactate turnover rate remains unclear. Nonetheless, the result of the present study raises questions and opens perspectives on the rationale of using hypoxia as a therapeutic aid for the treatment of insulin resistance. Moreover, the results of the second study open perspectives on the role of lactate as an intermediate metabolite and its modulatory effects on substrate metabolism during exercise. Additionally it is suggested that the simple nutritional intervention used in the third study can be of interest in the investigation on the aforementioned roles of lactate. Résumé : Lorsque le lactate est évoqué en rapport avec l'exercice, il est souvent considéré comme un déchet métabolique responsable de l'acidose métabolique, de la fatigue musculaire ou encore comme un facteur limitant de la performance. Or la littérature montre clairement que le lactate se révèle être plutôt un métabolite utilisé efficacement par de nombreux tissus par les voies oxydatives et, ainsi, il peut être considéré comme un lien entre le métabolisme glycolytique et le métabolisme oxydatif. De plus on lui prête des propriétés endocrines. Il est connu que l'entraînement d'endurance accroît rapidement le métabolisme du lactate, et il est suggéré que la performance d'endurance est liée à son métabolisme. Toutefois la relation entre le taux de renouvellement du lactate et la performance d'endurance est peu claire, et, de même, de quelle manière la modulation de son métabolisme peut influencer cette dernière. Le but de cette thèse était en conséquence d'investiguer de quelle manière et à quel degré l'augmentation du métabolisme du lactate, par l'augmentation de sa clearance et de son turnover, pouvait à son tour améliorer la performance d'endurance de sujets entraînés. L'objectif de la première étude a été d'augmenter la clearance du lactate par le biais d'un entraînement en conditions hypoxiques chez des cyclistes d'endurance. Basé sur la littérature scientifique existante, on a fait l'hypothèse que l'entraînement d'endurance et l'hypoxie exerceraient un effet synergétique sur le métabolisme du lactate et sur la performance, ce qui permettrait de montrer des relations entre performance et métabolisme du lactate. Les résultats de cette étude n'ont montré aucun effet synergique sur la performance ou le métabolisme du lactate. Toutefois, un effet délétère sur le métabolisme du glucose a été démontré. Quelques limitations de la méthode employée pour la mesure du métabolisme du lactate ont été soulevées, et partiellement résolues dans la seconde étude de ce travail, qui avait pour but d'évaluer la sensibilité du modèle pharmacodynamique utilisé pour le calcul du turnover du lactate. La troisième étude a investigué l'effet d'une augmentation de la lactatémie sur le métabolisme des substrats et sur la performance par une intervention nutritionnelle substituant une partie de glucose ingéré pendant l'exercice par du fructose. Les résultats montrent que les composants dynamiques du métabolisme du lactate sont significativement augmentés en présence de fructose, et que les oxydations de graisse et de glycogène sont significativement diminuées. Toutefois aucun effet sur la performance n'a été démontré. Les résultats de ces études montrent que la relation entre le métabolisme du lactate et la performance reste peu claire. Les résultats délétères de la première étude laissent envisager des pistes de travail, étant donné que l'entraînement en hypoxie est considéré comme outil thérapeutique dans le traitement de pathologies liées à la résistance à l'insuline. De plus les résultats de la troisième étude ouvrent des perspectives de travail quant au rôle du lactate comme intermédiaire métabolique durant l'exercice ainsi que sur ses effets directs sur le métabolisme. Ils suggèrent de plus que la manipulation nutritionnelle simple qui a été utilisée se révèle être un outil prometteur dans l'étude des rôles et effets métaboliques que peut revêtir le lactate durant l'exercice.
Resumo:
INTRODUCTION: Functional muscle recovery after peripheral nerve injury is far from optimal, partly due to atrophy of the muscle arising from prolonged denervation. We hypothesized that injecting regenerative cells into denervated muscle would reduce this atrophy. METHODS: A rat sciatic nerve lesion was performed, and Schwann cells or adipose-derived stem cells, untreated or induced to a "Schwann-cell-like" phenotype (dASC), were injected into the gastrocnemius muscle. Nerves were either repaired immediately or capped to prevent muscle reinnervation. One month later, functionality was measured using a walking track test, and muscle atrophy was assessed by examining muscle weight and histology. RESULTS: Schwann cells and dASC groups showed significantly better scores on functional tests when compared with injections of growth medium alone. Muscle weight and histology were also significantly improved in these groups. CONCLUSION: Cell injections may reduce muscle atrophy and could benefit nerve injury patients.