940 resultados para Municipal plans for spatial planning
Resumo:
La radioterapia è una tecnica molto impiegata per la cura del cancro. Attualmente la somministrazione avviene principalmente attraverso la intensity modulated radiotherapy (IMRT, sovrapposizione di campi ad intensità modulata), un cui sviluppo recente è la volumetric modulated arc therapy (VMAT, irradiazione continua lungo un arco ininterrotto). La generazione di piani richiede esperienza ed abilità: un dosimetrista seleziona cost functions ed obiettivi ed un TPS ottimizza la disposizione dei segmenti ad intensità modulata. Se il medico giudica il risultato non soddisfacente, il processo riparte da capo (trial-and-error). Una alternativa è la generazione automatica di piani. Erasmus-iCycle, software prodotto presso ErasmusMC (Rotterdam, The Netherlands), è un algoritmo di ottimizzazione multicriteriale di piani radioterapici per ottimizzazione di intensità basato su una wish list. L'output consiste di piani Pareto-ottimali ad intensità modulata. La generazione automatica garantisce maggiore coerenza e qualità più elevata con tempi di lavoro ridotti. Nello studio, una procedura di generazione automatica di piani con modalità VMAT è stata sviluppata e valutata per carcinoma polmonare. Una wish list è stata generata attraverso una procedura iterativa su un gruppo ristretto di pazienti con la collaborazione di fisici medici ed oncologi e poi validata su un gruppo più ampio di pazienti. Nella grande maggioranza dei casi, i piani automatici sono stati giudicati dagli oncologi migliori rispetto ai rispettivi piani IMRT clinici generati manualmente. Solo in pochi casi una rapida calibrazione manuale specifica per il paziente si è resa necessaria per soddisfare tutti i requisiti clinici. Per un sottogruppo di pazienti si è mostrato che la qualità dei piani VMAT automatici era equivalente o superiore rispetto ai piani VMAT generati manualmente da un dosimetrista esperto. Complessivamente, si è dimostrata la possibilità di generare piani radioterapici VMAT ad alta qualità automaticamente, con interazione umana minima. L'introduzione clinica della procedura automatica presso ErasmusMC è iniziata (ottobre 2015).
Resumo:
Soil erosion on sloping agricultural land poses a serious problem for the environment, as well as for production. In areas with highly erodible soils, such as those in loess zones, application of soil and water conservation measures is crucial to sustain agricultural yields and to prevent or reduce land degradation. The present study, carried out in Faizabad, Tajikistan, was designed to evaluate the potential of local conservation measures on cropland using a spatial modelling approach to provide decision-making support for the planning of spatially explicit sustainable land use. A sampling design to support comparative analysis between well-conserved units and other field units was established in order to estimate factors that determine water erosion, according to the Revised Universal Soil Loss Equation (RUSLE). Such factor-based approaches allow ready application using a geographic information system (GIS) and facilitate straightforward scenario modelling in areas with limited data resources. The study showed first that assessment of erosion and conservation in an area with inhomogeneous vegetation cover requires the integration of plot-based cover. Plot-based vegetation cover can be effectively derived from high-resolution satellite imagery, providing a useful basis for plot-wise conservation planning. Furthermore, thorough field assessments showed that 25.7% of current total cropland is covered by conservation measures (terracing, agroforestry and perennial herbaceous fodder). Assessment of the effectiveness of these local measures, combined with the RUSLE calculations, revealed that current average soil loss could be reduced through low-cost measures such as contouring (by 11%), fodder plants (by 16%), and drainage ditches (by 53%). More expensive measures such as terracing and agroforestry can reduce erosion by as much as 63% (for agroforestry) and 93% (for agroforestry combined with terracing). Indeed, scenario runs for different levels of tolerable erosion rates showed that more cost-intensive and technologically advanced measures would lead to greater reduction of soil loss. However, given economic conditions in Tajikistan, it seems advisable to support the spread of low-cost and labourextensive measures.
Resumo:
Transportation corridors in megaregions present a unique challenge for planners because of the high concentration of development, complex interjurisdictional issues, and history of independent development of core urban centers. The concept of resilience, as applied to megaregions, can be used to understand better the performance of these corridors. Resiliency is the ability to recover from or adjust easily to change. Resiliency performance measures can be expanded on for application to megaregions throughout the United States. When applied to transportation corridors in megaregions and represented by performance measures such as redundancy, continuity, connectivity, and travel time reliability, the concept of resiliency captures the spatial and temporal relationships between the attributes of a corridor, a network, and neighboring facilities over time at the regional and local levels. This paper focuses on the development of performance measurements for evaluating corridor resiliency as well as a plan for implementing analysis methods at the jurisdictional level. The transportation corridor between Boston, Massachusetts, and Washington, D.C., is used as a case study to represent the applicability of these measures to megaregions throughout the country.
Resumo:
A new system for computer-aided corrective surgery of the jaws has been developed and introduced clinically. It combines three-dimensional (3-D) surgical planning with conventional dental occlusion planning. The developed software allows simulating the surgical correction on virtual 3-D models of the facial skeleton generated from computed tomography (CT) scans. Surgery planning and simulation include dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and segment repositioning. By coupling the software with a tracking system and with the help of a special registration procedure, we are able to acquire dental occlusion plans from plaster model mounts. Upon completion of the surgical plan, the setup is used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with the help of a display showing jaw positions and 3-D positioning guides updated in real time during the surgical procedure. The proposed approach offers the advantages of 3-D visualization and tracking technology without sacrificing long-proven cast-based techniques for dental occlusion evaluation. The system has been applied on one patient. Throughout this procedure, we have experienced improved assessment of pathology, increased precision, and augmented control.
Resumo:
Efficient planning of soil conservation measures requires, first, to understand the impact of soil erosion on soil fertility with regard to local land cover classes; and second, to identify hot spots of soil erosion and bright spots of soil conservation in a spatially explicit manner. Soil organic carbon (SOC) is an important indicator of soil fertility. The aim of this study was to conduct a spatial assessment of erosion and its impact on SOC for specific land cover classes. Input data consisted of extensive ground truth, a digital elevation model and Landsat 7 imagery from two different seasons. Soil spectral reflectance readings were taken from soil samples in the laboratory and calibrated with results of SOC chemical analysis using regression tree modelling. The resulting model statistics for soil degradation assessments are promising (R2=0.71, RMSEV=0.32). Since the area includes rugged terrain and small agricultural plots, the decision tree models allowed mapping of land cover classes, soil erosion incidence and SOC content classes at an acceptable level of accuracy for preliminary studies. The various datasets were linked in the hot-bright spot matrix, which was developed to combine soil erosion incidence information and SOC content levels (for uniform land cover classes) in a scatter plot. The quarters of the plot show different stages of degradation, from well conserved land to hot spots of soil degradation. The approach helps to gain a better understanding of the impact of soil erosion on soil fertility and to identify hot and bright spots in a spatially explicit manner. The results show distinctly lower SOC content levels on large parts of the test areas, where annual crop cultivation was dominant in the 1990s and where cultivation has now been abandoned. On the other hand, there are strong indications that afforestations and fruit orchards established in the 1980s have been successful in conserving soil resources.
Resumo:
BACKGROUND: Calcaneonavicular coalitions (CNC) have been reported to be associated with anatomical aberrations of either the calcaneus and/or navicular bones. These morphological abnormalities may complicate accurate surgical resection. Three-dimensional analysis of spatial orientation and morphological characteristics may help in preoperative planning of resection. MATERIALS AND METHODS: Sixteen feet with a diagnosis of CNC were evaluated by means of 3-D CT modeling. Three angles were defined that were expressed in relation to one reproducible landmark (lateral border of the calcaneus): the dorsoplantar inclination, anteroposterior inclination, and socket angle. The depth and width of the coalitions were measured and calculated to obtain the estimated contact surface. Three-dimensional reconstructions of the calcanei served to evaluate the presence, distortion or absence of the anterior calcaneal facet and presence of a navicular beak. The interrater correlations were assessed in order to obtain values for the accuracy of the measurement methods. Sixteen normal feet were used as controls for comparison of the socket angle; anatomy of the anterior calcaneal facet and navicular beak as well. RESULTS: The dorsoplantar inclination angle averaged 50 degrees (+/-17), the anteroposterior inclination angle 64 degrees (+/-15), and the pathologic socket angle 98 degrees (+/-11). The average contact area was 156 mm(2). Ninety-four percent of all patients in the CNC group revealed a plantar navicular beak. In 50% of those patients the anterior calcaneal facet was replaced by the navicular portion and in 44% the facet was totally missing. In contrast, the socket angle in the control group averaged 77 degrees (+/-18), which was found to be statistically different than the CNC group (p = 0.0004). Only 25% of the patients in the control group had a plantar navicular beak. High, statistically significant interrater correlations were found for all measured angles. CONCLUSION: Computer-aided CT analysis and reconstructions help to determine the spatial orientations of CNC in space and provide useful information in order to anticipate morphological abnormalities of the calcaneus and navicular.
Resumo:
Planning in realistic domains typically involves reasoning under uncertainty, operating under time and resource constraints, and finding the optimal subset of goals to work on. Creating optimal plans that consider all of these features is a computationally complex, challenging problem. This dissertation develops an AO* search based planner named CPOAO* (Concurrent, Probabilistic, Over-subscription AO*) which incorporates durative actions, time and resource constraints, concurrent execution, over-subscribed goals, and probabilistic actions. To handle concurrent actions, action combinations rather than individual actions are taken as plan steps. Plan optimization is explored by adding two novel aspects to plans. First, parallel steps that serve the same goal are used to increase the plan’s probability of success. Traditionally, only parallel steps that serve different goals are used to reduce plan execution time. Second, actions that are executing but are no longer useful can be terminated to save resources and time. Conventional planners assume that all actions that were started will be carried out to completion. To reduce the size of the search space, several domain independent heuristic functions and pruning techniques were developed. The key ideas are to exploit dominance relations for candidate action sets and to develop relaxed planning graphs to estimate the expected rewards of states. This thesis contributes (1) an AO* based planner to generate parallel plans, (2) domain independent heuristics to increase planner efficiency, and (3) the ability to execute redundant actions and to terminate useless actions to increase plan efficiency.
Resumo:
In recent years, the ability to respond to real time changes in operations and reconfigurability in equipment are likely to become essential characteristics for next generation intralogistics systems as well as the level of automation, cost effectiveness and maximum throughput. In order to cope with turbulences and the increasing level of dynamic conditions, future intralogistics systems have to feature short reaction times, high flexibility in processes and the ability to adapt to frequent changes. The increasing autonomy and complexity in processes of today’s intralogistics systems requires new and innovative management approaches, which allow a fast response to (un)anticipated events and adaptation to changing environment in order to reduce the negative consequences of these events. The ability of a system to respond effectively a disruption depends more on the decisions taken before the event than those taken during or after. In this context, anticipatory change planning can be a usable approach for managers to make contingency plans for intralogistics systems to deal with the rapidly changing marketplace. This paper proposes a simulation-based decision making framework for the anticipatory change planning of intralogistics systems. This approach includes the quantitative assessments based on the simulation in defined scenarios as well as the analysis of performance availability that combines the flexibility corridors of different performance dimensions. The implementation of the approach is illustrated on a new intralogistics technology called the Cellular Transport System.
Resumo:
Regional and rural development policies in Europe increasingly emphasize entrepreneurship to mobilize the endogenous economic potential of rural territories. This study develops a concept to quantify entrepreneurship as place-dependent local potential to examine its impact on the local economic performance of rural territories in Switzerland. The short-to-medium-term impact of entrepreneurship on the economic performance of 1706 rural municipalities in Switzerland is assessed by applying three spatial random effects models. Results suggest a generally positive relationship between entrepreneurship and local development: rural municipalities with higher entrepreneurial potential generally show higher business tax revenues per capita and a lower share of social welfare cases among the population, although the impact on local employment is less clear. The explanatory power of entrepreneurship in all three models, however, was only moderate. This finding suggests that political expectations of fostering entrepreneurship to boost endogenous rural development in the short-to-medium term should be damped.
Resumo:
Reducing Emissions from Deforestation and Forest Degradation and enhancing forest carbon stocks (REDD+) is a performance-based payment mechanism currently being debated in international and national environmental policy and planning forums. As the mechanism is based on conditionality, payments must reflect land stewards’ level of compliance with carbon-efficient management practices. However, lack of clarity in land governance and carbon rights could undermine REDD+ implementation. Strategies are needed to avoid perverse incentives resulting from the commoditization of forest carbon stocks and, importantly, to identify and secure the rights of legitimate recipients of future REDD+ payments. We propose a landscape-level approach to address potential conflicts related to carbon tenure and REDD+ benefit sharing. We explore various land-tenure scenarios and their implications for carbon ownership in the context of a research site in northern Laos. Our case study shows that a combination of relevant scientific tools, knowledge, and participatory approaches can help avoid the marginalization of rural communities during the REDD+ process. The findings demonstrate that participatory land-use planning is an important step in ensuring that local communities are engaged in negotiating REDD+ schemes and that such negotiations are transparent. Local participation and agreements on land-use plans could provide a sound basis for developing efficient measurement, reporting, and verification systems for REDD+.
Territorial Cohesion through Spatial Policies: An Analysis with Cultural Theory and Clumsy Solutions
Resumo:
The European Territorial Cohesion Policy has been the subject of numerous debates in recent years. Most contributions focus on understanding the term itself and figuring out what is behind it, or arguing for or against a stronger formal competence of the European Union in this field. This article will leave out these aspects and pay attention to (undefined and legally non-binding) conceptual elements of territorial cohesion, focusing on the challenge of linking it within spatial policies and organising the relations. Therefore, the theoretical approach of Cultural Theory and its concept of clumsy solution are applied to overcome the dilemma of typical dichotomies by adding a third and a fourth (but not a fifth) perspective. In doing so, normative contradictions between different rational approaches can be revealed, explained and approached with the concept of ‘clumsy solutions’. This contribution aims at discussing how this theoretical approach helps us explain and frame a coalition between the Territorial Cohesion Policy and spatial policies. This approach contributes to finding the best way of linking and organising policies, although the solution might be clumsy according to the different rationalities involved.
Resumo:
PURPOSE This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). METHODS As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. RESULTS The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V95% increased from 90% to 96% and V107% decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. CONCLUSIONS MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.
Resumo:
Purpose: Proper delineation of ocular anatomy in 3D imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic Resonance Imaging (MRI) is nowadays utilized in clinical practice for the diagnosis confirmation and treatment planning of retinoblastoma in infants, where it serves as a source of information, complementary to the Fundus or Ultrasound imaging. Here we present a framework to fully automatically segment the eye anatomy in the MRI based on 3D Active Shape Models (ASM), we validate the results and present a proof of concept to automatically segment pathological eyes. Material and Methods: Manual and automatic segmentation were performed on 24 images of healthy children eyes (3.29±2.15 years). Imaging was performed using a 3T MRI scanner. The ASM comprises the lens, the vitreous humor, the sclera and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens and the optic nerve, then aligning the model and fitting it to the patient. We validated our segmentation method using a leave-one-out cross validation. The segmentation results were evaluated by measuring the overlap using the Dice Similarity Coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90±2.12% for the sclera and the cornea, 94.72±1.89% for the vitreous humor and 85.16±4.91% for the lens. The mean distance error was 0.26±0.09mm. The entire process took 14s on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor and the lens using MRI. We additionally present a proof of concept for fully automatically segmenting pathological eyes. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.
Resumo:
Introduction: Schizophrenia patients frequently suffer from complex motor abnormalities including fine and gross motor disturbances, abnormal involuntary movements, neurological soft signs and parkinsonism. These symptoms occur early in the course of the disease, continue in chronic patients and may deteriorate with antipsychotic medication. Furthermore gesture performance is impaired in patients, including the pantomime of tool use. Whether schizophrenia patients would show difficulties of actual tool use has not yet been investigated. Human tool use is complex and relies on a network of distinct and distant brain areas. We therefore aim to test if schizophrenia patients had difficulties in tool use and to assess associations with structural brain imaging using voxel based morphometry (VBM) and tract based spatial statistics (TBSS). Methode: In total, 44 patients with schizophrenia (DSM-5 criteria; 59% men, mean age 38) underwent structural MR imaging and performed the Tool-Use test. The test examines the use of a scoop and a hammer in three conditions: pantomime (without the tool), demonstration (with the tool) and actual use (with a recipient object). T1-weighted images were processed using SPM8 and DTI-data using FSL TBSS routines. To assess structural alterations of impaired tool use we first compared gray matter (GM) volume in VBM and white matter (WM) integrity in TBSS data of patients with and without difficulties of actual tool use. Next we explored correlations of Tool use scores and VBM and TBSS data. Group comparisons were family wise error corrected for multiple tests. Correlations were uncorrected (p < 0.001) with a minimum cluster threshold of 17 voxels (equivalent to a map-wise false positive rate of alpha < 0.0001 using a Monte Carlo procedure). Results: Tool use was impaired in schizophrenia (43.2% pantomime, 11.6% demonstration, 11.6% use). Impairment was related to reduced GM volume and WM integrity. Whole brain analyses detected an effect in the SMA in group analysis. Correlations of tool use scores and brain structure revealed alterations in brain areas of the dorso-dorsal pathway (superior occipital gyrus, superior parietal lobule, and dorsal premotor area) and the ventro-dorsal pathways (middle occipital gyrus, inferior parietal lobule) the action network, as well as the insula and the left hippocampus. Furthermore, significant correlations within connecting fiber tracts - particularly alterations within the bilateral corona radiata superior and anterior as well as the corpus callosum -were associated with Tool use performance. Conclusions: Tool use performance was impaired in schizophrenia, which was associated with reduced GM volume in the action network. Our results are in line with reports of impaired tool use in patients with brain lesions particularly of the dorso-dorsal and ventro-dorsal stream of the action network. In addition an effect of tool use on WM integrity was shown within fiber tracts connecting regions important for planning and executing tool use. Furthermore, hippocampus is part of a brain system responsible for spatial memory and navigation.The results suggest that structural brain alterations in the common praxis network contribute to impaired tool use in schizophrenia.