878 resultados para Multi-agent computing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distributed Generation (DG) from alternate sources and smart grid technologies represent good solutions for the increase in energy demands. Employment of these DG assets requires solutions for the new technical challenges that are accompanied by the integration and interconnection into operational power systems. A DG infrastructure comprised of alternate energy sources in addition to conventional sources, is developed as a test bed. The test bed is operated by synchronizing, wind, photovoltaic, fuel cell, micro generator and energy storage assets, in addition to standard AC generators. Connectivity of these DG assets is tested for viability and for their operational characteristics. The control and communication layers for dynamic operations are developed to improve the connectivity of alternates to the power system. A real time application for the operation of alternate sources in microgrids is developed. Multi agent approach is utilized to improve stability and sequences of actions for black start are implemented. Experiments for control and stability issues related to dynamic operation under load conditions have been conducted and verified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relatório de estágio apresentado para a obtenção do grau de mestre em Educação e Comunicação Multimédia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With increasing prevalence and capabilities of autonomous systems as part of complex heterogeneous manned-unmanned environments (HMUEs), an important consideration is the impact of the introduction of automation on the optimal assignment of human personnel. The US Navy has implemented optimal staffing techniques before in the 1990's and 2000's with a "minimal staffing" approach. The results were poor, leading to the degradation of Naval preparedness. Clearly, another approach to determining optimal staffing is necessary. To this end, the goal of this research is to develop human performance models for use in determining optimal manning of HMUEs. The human performance models are developed using an agent-based simulation of the aircraft carrier flight deck, a representative safety-critical HMUE. The Personnel Multi-Agent Safety and Control Simulation (PMASCS) simulates and analyzes the effects of introducing generalized maintenance crew skill sets and accelerated failure repair times on the overall performance and safety of the carrier flight deck. A behavioral model of four operator types (ordnance officers, chocks and chains, fueling officers, plane captains, and maintenance operators) is presented here along with an aircraft failure model. The main focus of this work is on the maintenance operators and aircraft failure modeling, since they have a direct impact on total launch time, a primary metric for carrier deck performance. With PMASCS I explore the effects of two variables on total launch time of 22 aircraft: 1) skill level of maintenance operators and 2) aircraft failure repair times while on the catapult (referred to as Phase 4 repair times). It is found that neither introducing a generic skill set to maintenance crews nor introducing a technology to accelerate Phase 4 aircraft repair times improves the average total launch time of 22 aircraft. An optimal manning level of 3 maintenance crews is found under all conditions, the point at which any additional maintenance crews does not reduce the total launch time. An additional discussion is included about how these results change if the operations are relieved of the bottleneck of installing the holdback bar at launch time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the novel theory for performing multi-agent activity recognition without requiring large training corpora. The reduced need for data means that robust probabilistic recognition can be performed within domains where annotated datasets are traditionally unavailable. Complex human activities are composed from sequences of underlying primitive activities. We do not assume that the exact temporal ordering of primitives is necessary, so can represent complex activity using an unordered bag. Our three-tier architecture comprises low-level video tracking, event analysis and high-level inference. High-level inference is performed using a new, cascading extension of the Rao–Blackwellised Particle Filter. Simulated annealing is used to identify pairs of agents involved in multi-agent activity. We validate our framework using the benchmarked PETS 2006 video surveillance dataset and our own sequences, and achieve a mean recognition F-Score of 0.82. Our approach achieves a mean improvement of 17% over a Hidden Markov Model baseline.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Planning is an essential process in teams of multiple agents pursuing a common goal. When the effects of actions undertaken by agents are uncertain, evaluating the potential risk of such actions alongside their utility might lead to more rational decisions upon planning. This challenge has been recently tackled for single agent settings, yet domains with multiple agents that present diverse viewpoints towards risk still necessitate comprehensive decision making mechanisms that balance the utility and risk of actions. In this work, we propose a novel collaborative multi-agent planning framework that integrates (i) a team-level online planner under uncertainty that extends the classical UCT approximate algorithm, and (ii) a preference modeling and multicriteria group decision making approach that allows agents to find accepted and rational solutions for planning problems, predicated on the attitude each agent adopts towards risk. When utilised in risk-pervaded scenarios, the proposed framework can reduce the cost of reaching the common goal sought and increase effectiveness, before making collective decisions by appropriately balancing risk and utility of actions. 

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past years, we could observe a significant amount of new robotic systems in science, industry, and everyday life. To reduce the complexity of these systems, the industry constructs robots that are designated for the execution of a specific task such as vacuum cleaning, autonomous driving, observation, or transportation operations. As a result, such robotic systems need to combine their capabilities to accomplish complex tasks that exceed the abilities of individual robots. However, to achieve emergent cooperative behavior, multi-robot systems require a decision process that copes with the communication challenges of the application domain. This work investigates a distributed multi-robot decision process, which addresses unreliable and transient communication. This process composed by five steps, which we embedded into the ALICA multi-agent coordination language guided by the PROViDE negotiation middleware. The first step encompasses the specification of the decision problem, which is an integral part of the ALICA implementation. In our decision process, we describe multi-robot problems by continuous nonlinear constraint satisfaction problems. The second step addresses the calculation of solution proposals for this problem specification. Here, we propose an efficient solution algorithm that integrates incomplete local search and interval propagation techniques into a satisfiability solver, which forms a satisfiability modulo theories (SMT) solver. In the third decision step, the PROViDE middleware replicates the solution proposals among the robots. This replication process is parameterized with a distribution method, which determines the consistency properties of the proposals. In a fourth step, we investigate the conflict resolution. Therefore, an acceptance method ensures that each robot supports one of the replicated proposals. As we integrated the conflict resolution into the replication process, a sound selection of the distribution and acceptance methods leads to an eventual convergence of the robot proposals. In order to avoid the execution of conflicting proposals, the last step comprises a decision method, which selects a proposal for implementation in case the conflict resolution fails. The evaluation of our work shows that the usage of incomplete solution techniques of the constraint satisfaction solver outperforms the runtime of other state-of-the-art approaches for many typical robotic problems. We further show by experimental setups and practical application in the RoboCup environment that our decision process is suitable for making quick decisions in the presence of packet loss and delay. Moreover, PROViDE requires less memory and bandwidth compared to other state-of-the-art middleware approaches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Reputation, influenced by ratings from past clients, is crucial for providers competing for custom. For new providers with less track record, a few negative ratings can harm their chances of growing. In the JASPR project, we aim to look at how to ensure automated reputation assessments are justified and informative. Even an honest balanced review of a service provision may still be an unreliable predictor of future performance if the circumstances differ. For example, a service may have previously relied on different sub-providers to now, or been affected by season-specific weather events. A common way to ameliorate the ratings that may not reflect future performance is by weighting by recency. We argue that better results are obtained by querying provenance records on how services are provided for the circumstances of provision, to determine the significance of past interactions. Informed by case studies in global logistics, taxi hire, and courtesy car leasing, we are going on to explore the generation of explanations for reputation assessments, which can be valuable both for clients and for providers wishing to improve their match to the market, and applying machine learning to predict aspects of service provision which may influence decisions on the appropriateness of a provider. In this talk, I will give an overview of the research conducted and planned on JASPR. Speaker Biography Dr Simon Miles Simon Miles is a Reader in Computer Science at King's College London, UK, and head of the Agents and Intelligent Systems group. He conducts research in the areas of normative systems, data provenance, and medical informatics at King's, and has published widely and manages a number of research projects in these areas. He was previously a researcher at the University of Southampton after graduating from his PhD at Warwick. He has twice been an organising committee member for the Autonomous Agents and Multi-Agent Systems conference series, and was a member of the W3C working group which published standards on interoperable provenance data in 2013.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This keynote presentation will report some of our research work and experience on the development and applications of relevant methods, models, systems and simulation techniques in support of different types and various levels of decision making for business, management and engineering. In particular, the following topics will be covered. Modelling, multi-agent-based simulation and analysis of the allocation management of carbon dioxide emission permits in China (Nanfeng Liu & Shuliang Li Agent-based simulation of the dynamic evolution of enterprise carbon assets (Yin Zeng & Shuliang Li) A framework & system for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps: a big data perspective (Jin Xu, Zheng Li, Shuliang Li & Yanyan Zhang) Open innovation: intelligent model, social media & complex adaptive system simulation (Shuliang Li & Jim Zheng Li) A framework, model and software prototype for modelling and simulation for deshopping behaviour and how companies respond (Shawkat Rahman & Shuliang Li) Integrating multiple agents, simulation, knowledge bases and fuzzy logic for international marketing decision making (Shuliang Li & Jim Zheng Li) A Web-based hybrid intelligent system for combined conventional, digital, mobile, social media and mobile marketing strategy formulation (Shuliang Li & Jim Zheng Li) A hybrid intelligent model for Web & social media dynamics, and evolutionary and adaptive branding (Shuliang Li) A hybrid paradigm for modelling, simulation and analysis of brand virality in social media (Shuliang Li & Jim Zheng Li) Network configuration management: attack paradigms and architectures for computer network survivability (Tero Karvinen & Shuliang Li)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interações sociais são frequentemente descritas como trocas sociais. Na literatura, trocas sociais em Sistemas Multiagentes são objeto de estudo em diversos contextos, nos quais as relações sociais são interpretadas como trocas sociais. Dentre os problemas estudados, um problema fundamental discutido na literatura e a regulação¸ ao de trocas sociais, por exemplo, a emergência de trocas equilibradas ao longo do tempo levando ao equilíbrio social e/ou comportamento de equilíbrio/justiça. Em particular, o problema da regulação de trocas sociais e difícil quando os agentes tem informação incompleta sobre as estratégias de troca dos outros agentes, especificamente se os agentes tem diferentes estratégias de troca. Esta dissertação de mestrado propõe uma abordagem para a autorregulacao de trocas sociais em sistemas multiagentes, baseada na Teoria dos Jogos. Propõe o modelo de Jogo de Autorregulacão ao de Processos de Trocas Sociais (JAPTS), em uma versão evolutiva e espacial, onde os agentes organizados em uma rede complexa, podem evoluir suas diferentes estratégias de troca social. As estratégias de troca são definidas através dos parâmetros de uma função de fitness. Analisa-se a possibilidade do surgimento do comportamento de equilíbrio quando os agentes, tentando maximizar sua adaptação através da função de fitness, procuram aumentar o numero de interações bem sucedidas. Considera-se um jogo de informação incompleta, uma vez que os agentes não tem informações sobre as estratégias de outros agentes. Para o processo de aprendizado de estratégias, utiliza-se um algoritmo evolutivo, no qual os agentes visando maximizar a sua função de fitness, atuam como autorregulares dos processos de trocas possibilitadas pelo jogo, contribuindo para o aumento do numero de interações bem sucedidas. São analisados 5 diferentes casos de composição da sociedade. Para alguns casos, analisa-se também um segundo tipo de cenário, onde a topologia de rede é modificada, representando algum tipo de mobilidade, a fim de analisar se os resultados são dependentes da vizinhança. Alem disso, um terceiro cenário é estudado, no qual é se determinada uma política de influencia, quando as medias dos parâmetros que definem as estratégias adotadas pelos agentes tornam-se publicas em alguns momentos da simulação, e os agentes que adotam a mesma estratégia de troca, influenciados por isso, imitam esses valores. O modelo foi implementado em NetLogo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O problema de planejamento de rotas de robôs móveis consiste em determinar a melhor rota para um robô, em um ambiente estático e/ou dinâmico, que seja capaz de deslocá-lo de um ponto inicial até e um ponto final, também em conhecido como estado objetivo. O presente trabalho emprega o uso de uma abordagem baseada em Algoritmos Genéticos para o planejamento de rotas de múltiplos robôs em um ambiente complexo composto por obstáculos fixos e obstáculos moveis. Através da implementação do modelo no software do NetLogo, uma ferramenta utilizada em simulações de aplicações multiagentes, possibilitou-se a modelagem de robôs e obstáculos presentes no ambiente como agentes interativos, viabilizando assim o desenvolvimento de processos de detecção e desvio de obstáculos. A abordagem empregada busca pela melhor rota para robôs e apresenta um modelo composto pelos operadores básicos de reprodução e mutação, acrescido de um novo operador duplo de refinamento capaz de aperfeiçoar as melhores soluções encontradas através da eliminação de movimentos inúteis. Além disso, o calculo da rota de cada robô adota um método de geração de subtrechos, ou seja, não calcula apenas uma unica rota que conecta os pontos inicial e final do cenário, mas sim várias pequenas subrotas que conectadas formam um caminho único capaz de levar o robô ao estado objetivo. Neste trabalho foram desenvolvidos dois cenários, para avaliação da sua escalabilidade: o primeiro consiste em um cenário simples composto apenas por um robô, um obstáculo movel e alguns obstáculos fixos; já o segundo, apresenta um cenário mais robusto, mais amplo, composto por múltiplos robôs e diversos obstáculos fixos e moveis. Ao final, testes de desempenho comparativos foram efetuados entre a abordagem baseada em Algoritmos Genéticos e o Algoritmo A*. Como critério de comparação foi utilizado o tamanho das rotas obtidas nas vinte simulações executadas em cada abordagem. A analise dos resultados foi especificada através do Teste t de Student.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robotics is an emergent branch of engineering that involves the conception, manufacture, and control of robots. It is a multidisciplinary field that combines electronics, design, computer science, artificial intelligence, mechanics and nanotechnology. Its evolution results in machines that are able to perform tasks with some level of complexity. Multi-agent systems is a researching topic within robotics, thus they allow the solving of higher complexity problems, through the execution of simple routines. Robotic soccer allows the study and development of robotics and multiagent systems, as the agents have to work together as a team, having in consideration most problems found in our quotidian, as for example adaptation to a highly dynamic environment as it is the one of a soccer game. CAMBADA is the robotic soccer team belonging to the group of research IRIS from IEETA, composed by teachers, researchers and students of the University of Aveiro, which annually has as main objective the participation in the RoboCup, in the Middle Size League. The purpose of this work is to improve the coordination in set pieces situations. This thesis introduces a new behavior and the adaptation of the already existing ones in the offensive situation, as well as the proposal of a new positioning method in defensive situations. The developed work was incorporated within the competition software of the robots. Which allows the presentation, in this dissertation, of the experimental results obtained, through simulation software as well as through the physical robots on the laboratory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Relatório de estágio apresentado para a obtenção do grau de mestre em Educação e Comunicação Multimédia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The majority of research work carried out in the field of Operations-Research uses methods and algorithms to optimize the pick-up and delivery problem. Most studies aim to solve the vehicle routing problem, to accommodate optimum delivery orders, vehicles etc. This paper focuses on green logistics approach, where existing Public Transport infrastructure capability of a city is used for the delivery of small and medium sized packaged goods thus, helping improve the situation of urban congestion and greenhouse gas emissions reduction. It carried out a study to investigate the feasibility of the proposed multi-agent based simulation model, for efficiency of cost, time and energy consumption. Multimodal Dijkstra Shortest Path algorithm and Nested Monte Carlo Search have been employed for a two-phase algorithmic approach used for generation of time based cost matrix. The quality of the tour is dependent on the efficiency of the search algorithm implemented for plan generation and route planning. The results reveal a definite advantage of using Public Transportation over existing delivery approaches in terms of energy efficiency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multi-agent systems offer a new and exciting way of understanding the world of work. We apply agent-based modeling and simulation to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between people management practices on the shop-floor and retail performance. Despite the fact we are working within a relatively novel and complex domain, it is clear that using an agent-based approach offers great potential for improving organizational capabilities in the future. Our multi-disciplinary research team has worked closely with one of the UK’s top ten retailers to collect data and build an understanding of shop-floor operations and the key actors in a department (customers, staff, and managers). Based on this case study we have built and tested our first version of a retail branch agent-based simulation model where we have focused on how we can simulate the effects of people management practices on customer satisfaction and sales. In our experiments we have looked at employee development and cashier empowerment as two examples of shop floor management practices. In this paper we describe the underlying conceptual ideas and the features of our simulation model. We present a selection of experiments we have conducted in order to validate our simulation model and to show its potential for answering “what-if” questions in a retail context. We also introduce a novel performance measure which we have created to quantify customers’ satisfaction with service, based on their individual shopping experiences.