962 resultados para Monte-Carlo-Simulation
Resumo:
An inherent weakness in the management of large scale projects is the failure to achieve the scheduled completion date. When projects are planned with the objective of time achievement, the initial planning plays a vital role in the successful achievement of project deadlines. Cost and quality are additional priorities when such projects are being executed. This article proposes a methodology for achieving time duration of a project through risk analysis with the application of a Monte Carlo simulation technique. The methodology is demonstrated using a case application of a cross-country petroleum pipeline construction project.
Resumo:
In recent work we have developed a novel variational inference method for partially observed systems governed by stochastic differential equations. In this paper we provide a comparison of the Variational Gaussian Process Smoother with an exact solution computed using a Hybrid Monte Carlo approach to path sampling, applied to a stochastic double well potential model. It is demonstrated that the variational smoother provides us a very accurate estimate of mean path while conditional variance is slightly underestimated. We conclude with some remarks as to the advantages and disadvantages of the variational smoother. © 2008 Springer Science + Business Media LLC.
Resumo:
In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. Flexible blocking strategies are introduced to further improve mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample, applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.
Resumo:
∗This research, which was funded by a grant from the Natural Sciences and Engineering Research Council of Canada, formed part of G.A.’s Ph.D. thesis [1].
Resumo:
A procedure for calculating critical level and power of likelihood ratio test, based on a Monte-Carlo simulation method is proposed. General principles of software building for its realization are given. Some examples of its application are shown.
Resumo:
We present quasi-Monte Carlo analogs of Monte Carlo methods for some linear algebra problems: solving systems of linear equations, computing extreme eigenvalues, and matrix inversion. Reformulating the problems as solving integral equations with a special kernels and domains permits us to analyze the quasi-Monte Carlo methods with bounds from numerical integration. Standard Monte Carlo methods for integration provide a convergence rate of O(N^(−1/2)) using N samples. Quasi-Monte Carlo methods use quasirandom sequences with the resulting convergence rate for numerical integration as good as O((logN)^k)N^(−1)). We have shown theoretically and through numerical tests that the use of quasirandom sequences improves both the magnitude of the error and the convergence rate of the considered Monte Carlo methods. We also analyze the complexity of considered quasi-Monte Carlo algorithms and compare them to the complexity of the analogous Monte Carlo and deterministic algorithms.
Resumo:
MSC Subject Classification: 65C05, 65U05.
Resumo:
2002 Mathematics Subject Classification: 65C05.
Resumo:
2000 Mathematics Subject Classification: 65C05
Resumo:
In this paper we develop set of novel Markov Chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. The novel diffusion bridge proposal derived from the variational approximation allows the use of a flexible blocking strategy that further improves mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample applications the algorithm is accurate except in the presence of large observation errors and low to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient. © 2011 Springer-Verlag.
Resumo:
The paper analyzes a special corporate banking product, the so called cash-pool, which gained remarkable popularity in the recent years as firms try to centralize and manage their liquidity more efficiently. The novelty of this paper is the formalization of a valuation model which can serve as a basis for a Monte Carlo simulation to assess the most important benefits of the firms arising from the pooling of their cash holdings. The literature emphasizes several benefits of cash-pooling such as interest rate savings, economy of scale and reduced cash-flow volatility. The presented model focuses on the interest rate savings complemented with a new aspect: the reduced counterparty risk toward the bank. The main conclusion of the analysis is that the value of a cash-pool is higher in case of firms with large, diverse and volatile cash-flows having less access to the capital markets especially if the partner bank is risky and offers a high interest spread. It is also shown that cash-pooling is not the privilege of large multinational firms any more as the initial direct costs can be easily regained within a year even in the case of SMEs.
Resumo:
The Monte Carlo method is accurate and is relatively simple to implement for the solution of problems involving complex geometries and anisotropic scattering of radiation as compared with other numerical techniques. In addition, differently of what happens for most of numerical techniques, for which the associated simulations computational time tends to increase exponentially with the complexity of the problems, in the Monte Carlo the increase of the computational time tends to be linear. Nevertheless, the Monte Carlo solution is highly computer time consuming for most of the interest problems. The Multispectral Energy Bundle model allows the reduction of the computational time associated to the Monte Carlo solution. The referred model is here analyzed for applications in media constituted for nonparticipating species and water vapor, which is an important emitting species formed during the combustion of hydrocarbon fuels. Aspects related to computer time optimization are investigated the model solutions are compared with benchmark line-by-line solutions