919 resultados para Modeling of purification operations inbiotechnology
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.
Resumo:
The existing seismic isolation systems are based on well-known and accepted physical principles, but they are still having some functional drawbacks. As an attempt of improvement, the Roll-N-Cage (RNC) isolator has been recently proposed. It is designed to achieve a balance in controlling isolator displacement demands and structural accelerations. It provides in a single unit all the necessary functions of vertical rigid support, horizontal flexibility with enhanced stability, resistance to low service loads and minor vibration, and hysteretic energy dissipation characteristics. It is characterized by two unique features that are a self-braking (buffer) and a self-recentering mechanism. This paper presents an advanced representation of the main and unique features of the RNC isolator using an available finite element code called SAP2000. The validity of the obtained SAP2000 model is then checked using experimental, numerical and analytical results. Then, the paper investigates the merits and demerits of activating the built-in buffer mechanism on both structural pounding mitigation and isolation efficiency. The paper addresses the problem of passive alleviation of possible inner pounding within the RNC isolator, which may arise due to the activation of its self-braking mechanism under sever excitations such as near-fault earthquakes. The results show that the obtained finite element code-based model can closely match and accurately predict the overall behavior of the RNC isolator with effectively small errors. Moreover, the inherent buffer mechanism of the RNC isolator could mitigate or even eliminate direct structure-tostructure pounding under severe excitation considering limited septation gaps between adjacent structures. In addition, the increase of inherent hysteretic damping of the RNC isolator can efficiently limit its peak displacement together with the severity of the possibly developed inner pounding and, therefore, alleviate or even eliminate the possibly arising negative effects of the buffer mechanism on the overall RNC-isolated structural responses.
Resumo:
En una planta de fusión, los materiales en contacto con el plasma así como los materiales de primera pared experimentan condiciones particularmente hostiles al estar expuestos a altos flujos de partículas, neutrones y grandes cargas térmicas. Como consecuencia de estas diferentes y complejas condiciones de trabajo, el estudio, desarrollo y diseño de estos materiales es uno de los más importantes retos que ha surgido en los últimos años para la comunidad científica en el campo de los materiales y la energía. Debido a su baja tasa de erosión, alta resistencia al sputtering, alta conductividad térmica, muy alto punto de fusión y baja retención de tritio, el tungsteno (wolframio) es un importante candidato como material de primera pared y como posible material estructural avanzado en fusión por confinamiento magnético e inercial. Sin embargo, el tiempo de vida del tungsteno viene controlado por diversos factores como son su respuesta termo-mecánica en la superficie, la posibilidad de fusión y el fallo por acumulación de helio. Es por ello que el tiempo de vida limitado por la respuesta mecánica del tungsteno (W), y en particular su fragilidad, sean dos importantes aspectos que tienes que ser investigados. El comportamiento plástico en materiales refractarios con estructura cristalina cúbica centrada en las caras (bcc) como el tungsteno está gobernado por las dislocaciones de tipo tornillo a escala atómica y por conjuntos e interacciones de dislocaciones a escalas más grandes. El modelado de este complejo comportamiento requiere la aplicación de métodos capaces de resolver de forma rigurosa cada una de las escalas. El trabajo que se presenta en esta tesis propone un modelado multiescala que es capaz de dar respuestas ingenieriles a las solicitudes técnicas del tungsteno, y que a su vez está apoyado por la rigurosa física subyacente a extensas simulaciones atomísticas. En primer lugar, las propiedades estáticas y dinámicas de las dislocaciones de tipo tornillo en cinco potenciales interatómicos de tungsteno son comparadas, determinando cuáles de ellos garantizan una mayor fidelidad física y eficiencia computacional. Las grandes tasas de deformación asociadas a las técnicas de dinámica molecular hacen que las funciones de movilidad de las dislocaciones obtenidas no puedan ser utilizadas en los siguientes pasos del modelado multiescala. En este trabajo, proponemos dos métodos alternativos para obtener las funciones de movilidad de las dislocaciones: un modelo Monte Cario cinético y expresiones analíticas. El conjunto de parámetros necesarios para formular el modelo de Monte Cario cinético y la ley de movilidad analítica son calculados atomísticamente. Estos parámetros incluyen, pero no se limitan a: la determinación de las entalpias y energías de formación de las parejas de escalones que forman las dislocaciones, la parametrización de los efectos de no Schmid característicos en materiales bcc,etc. Conociendo la ley de movilidad de las dislocaciones en función del esfuerzo aplicado y la temperatura, se introduce esta relación como ecuación de flujo dentro de un modelo de plasticidad cristalina. La predicción del modelo sobre la dependencia del límite de fluencia con la temperatura es validada experimentalmente con ensayos uniaxiales en tungsteno monocristalino. A continuación, se calcula el límite de fluencia al aplicar ensayos uniaxiales de tensión para un conjunto de orientaciones cristalográticas dentro del triángulo estándar variando la tasa de deformación y la temperatura de los ensayos. Finalmente, y con el objetivo de ser capaces de predecir una respuesta más dúctil del tungsteno para una variedad de estados de carga, se realizan ensayos biaxiales de tensión sobre algunas de las orientaciones cristalográficas ya estudiadas en función de la temperatura.-------------------------------------------------------------------------ABSTRACT ----------------------------------------------------------Tungsten and tungsten alloys are being considered as leading candidates for structural and functional materials in future fusion energy devices. The most attractive properties of tungsten for the design of magnetic and inertial fusion energy reactors are its high melting point, high thermal conductivity, low sputtering yield and low longterm disposal radioactive footprint. However, tungsten also presents a very low fracture toughness, mostly associated with inter-granular failure and bulk plasticity, that limits its applications. As a result of these various and complex conditions of work, the study, development and design of these materials is one of the most important challenges that have emerged in recent years to the scientific community in the field of materials for energy applications. The plastic behavior of body-centered cubic (bcc) refractory metals like tungsten is governed by the kink-pair mediated thermally activated motion of h¿ (\1 11)i screw dislocations on the atomistic scale and by ensembles and interactions of dislocations at larger scales. Modeling this complex behavior requires the application of methods capable of resolving rigorously each relevant scale. The work presented in this thesis proposes a multiscale model approach that gives engineering-level responses to the technical specifications required for the use of tungsten in fusion energy reactors, and it is also supported by the rigorous underlying physics of extensive atomistic simulations. First, the static and dynamic properties of screw dislocations in five interatomic potentials for tungsten are compared, determining which of these ensure greater physical fidelity and computational efficiency. The large strain rates associated with molecular dynamics techniques make the dislocation mobility functions obtained not suitable to be used in the next steps of the multiscale model. Therefore, it is necessary to employ mobility laws obtained from a different method. In this work, we suggest two alternative methods to get the dislocation mobility functions: a kinetic Monte Carlo model and analytical expressions. The set of parameters needed to formulate the kinetic Monte Carlo model and the analytical mobility law are calculated atomistically. These parameters include, but are not limited to: enthalpy and energy barriers of kink-pairs as a function of the stress, width of the kink-pairs, non-Schmid effects ( both twinning-antitwinning asymmetry and non-glide stresses), etc. The function relating dislocation velocity with applied stress and temperature is used as the main source of constitutive information into a dislocation-based crystal plasticity framework. We validate the dependence of the yield strength with the temperature predicted by the model against existing experimental data of tensile tests in singlecrystal tungsten, with excellent agreement between the simulations and the measured data. We then extend the model to a number of crystallographic orientations uniformly distributed in the standard triangle and study the effects of temperature and strain rate. Finally, we perform biaxial tensile tests and provide the yield surface as a function of the temperature for some of the crystallographic orientations explored in the uniaxial tensile tests.
Resumo:
The usual way of modeling variability using threshold voltage shift and drain current amplification is becoming inaccurate as new sources of variability appear in sub-22nm devices. In this work we apply the four-injector approach for variability modeling to the simulation of SRAMs with predictive technology models from 20nm down to 7nm nodes. We show that the SRAMs, designed following ITRS roadmap, present stability metrics higher by at least 20% compared to a classical variability modeling approach. Speed estimation is also pessimistic, whereas leakage is underestimated if sub-threshold slope and DIBL mismatch and their correlations with threshold voltage are not considered.
3-D modeling of perimeter recombination in GaAs diodes and its influence on concentrator solar cells
Resumo:
This paper describes a complete modelling of the perimeter recombination of GaAs diodes which solves most unknowns and suppresses the limitations of previous models. Because of the three dimensional nature of the implemented model, it is able to simulate real devices. GaAs diodes on two epiwafers with different base doping levels, sizes and geometries, namely square and circular are manufactured. The validation of the model is achieved by fitting the experimental measurements of the dark IV curve of the manufactured GaAs diodes. A comprehensive 3-D description of the occurring phenomena affecting the perimeter recombination is supplied with the help of the model. Finally, the model is applied to concentrator GaAs solar cells to assess the impact of their doping level, size and geometry on the perimeter recombination.
Resumo:
Perceptual voice evaluation according to the GRBAS scale is modelled using a linear combination of acoustic parameters calculated after a filter-bank analysis of the recorded voice signals. Modelling results indicate that for breathiness and asthenia more than 55% of the variance of perceptual rates can be explained by such a model, with only 4 latent variables. Moreover, the greatest part of the explained variance can be attributed to only one or two latent variables similarly weighted by all 5 listeners involved in the experiment. Correlation factors between actual rates and model predictions around 0.6 are obtained.
Resumo:
Neuronal morphology is hugely variable across brain regions and species, and their classification strategies are a matter of intense debate in neuroscience. GABAergic cortical interneurons have been a challenge because it is difficult to find a set of morphological properties which clearly define neuronal types. A group of 48 neuroscience experts around the world were asked to classify a set of 320 cortical GABAergic interneurons according to the main features of their three-dimensional morphological reconstructions. A methodology for building a model which captures the opinions of all the experts was proposed. First, one Bayesian network was learned for each expert, and we proposed an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts was induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts was built. A thorough analysis of the consensus model identified different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types was defined by performing inference in the Bayesian multinet. These findings were used to validate the model and to gain some insights into neuron morphology.
Resumo:
En los últimos años, el Ge ha ganado de nuevo atención con la finalidad de ser integrado en el seno de las existentes tecnologías de microelectrónica. Aunque no se le considera como un canddato capaz de reemplazar completamente al Si en el futuro próximo, probalemente servirá como un excelente complemento para aumentar las propiedades eléctricas en dispositivos futuros, especialmente debido a su alta movilidad de portadores. Esta integración requiere de un avance significativo del estado del arte en los procesos de fabricado. Técnicas de simulación, como los algoritmos de Monte Carlo cinético (KMC), proporcionan un ambiente atractivo para llevar a cabo investigación y desarrollo en este campo, especialmente en términos de costes en tiempo y financiación. En este estudio se han usado, por primera vez, técnicas de KMC con el fin entender el procesado “front-end” de Ge en su fabricación, específicamente la acumulación de dañado y amorfización producidas por implantación iónica y el crecimiento epitaxial en fase sólida (SPER) de las capas amorfizadas. Primero, simulaciones de aproximación de clisiones binarias (BCA) son usadas para calcular el dañado causado por cada ión. La evolución de este dañado en el tiempo se simula usando KMC sin red, o de objetos (OKMC) en el que sólamente se consideran los defectos. El SPER se simula a través de una aproximación KMC de red (LKMC), siendo capaz de seguir la evolución de los átomos de la red que forman la intercara amorfo/cristalina. Con el modelo de amorfización desarrollado a lo largo de este trabajo, implementado en un simulador multi-material, se pueden simular todos estos procesos. Ha sido posible entender la acumulación de dañado, desde la generación de defectos puntuales hasta la formación completa de capas amorfas. Esta acumulación ocurre en tres regímenes bien diferenciados, empezando con un ritmo lento de formación de regiones de dañado, seguido por una rápida relajación local de ciertas áreas en la fase amorfa donde ambas fases, amorfa y cristalina, coexisten, para terminar en la amorfización completa de capas extensas, donde satura el ritmo de acumulación. Dicha transición ocurre cuando la concentración de dañado supera cierto valor límite, el cual es independiente de las condiciones de implantación. Cuando se implantan los iones a temperaturas relativamente altas, el recocido dinámico cura el dañado previamente introducido y se establece una competición entre la generación de dañado y su disolución. Estos efectos se vuelven especialmente importantes para iones ligeros, como el B, el cual crea dañado más diluido, pequeño y distribuido de manera diferente que el causado por la implantación de iones más pesados, como el Ge. Esta descripción reproduce satisfactoriamente la cantidad de dañado y la extensión de las capas amorfas causadas por implantación iónica reportadas en la bibliografía. La velocidad de recristalización de la muestra previamente amorfizada depende fuertemente de la orientación del sustrato. El modelo LKMC presentado ha sido capaz de explicar estas diferencias entre orientaciones a través de un simple modelo, dominado por una única energía de activación y diferentes prefactores en las frecuencias de SPER dependiendo de las configuraciones de vecinos de los átomos que recristalizan. La formación de maclas aparece como una consecuencia de esta descripción, y es predominante en sustratos crecidos en la orientación (111)Ge. Este modelo es capaz de reproducir resultados experimentales para diferentes orientaciones, temperaturas y tiempos de evolución de la intercara amorfo/cristalina reportados por diferentes autores. Las parametrizaciones preliminares realizadas de los tensores de activación de tensiones son también capaces de proveer una buena correlación entre las simulaciones y los resultados experimentales de velocidad de SPER a diferentes temperaturas bajo una presión hidrostática aplicada. Los estudios presentados en esta tesis han ayudado a alcanzar un mejor entendimiento de los mecanismos de producción de dañado, su evolución, amorfización y SPER para Ge, además de servir como una útil herramienta para continuar el trabajo en este campo. In the recent years, Ge has regained attention to be integrated into existing microelectronic technologies. Even though it is not thought to be a feasible full replacement to Si in the near future, it will likely serve as an excellent complement to enhance electrical properties in future devices, specially due to its high carrier mobilities. This integration requires a significant upgrade of the state-of-the-art of regular manufacturing processes. Simulation techniques, such as kinetic Monte Carlo (KMC) algorithms, provide an appealing environment to research and innovation in the field, specially in terms of time and funding costs. In the present study, KMC techniques are used, for the first time, to understand Ge front-end processing, specifically damage accumulation and amorphization produced by ion implantation and Solid Phase Epitaxial Regrowth (SPER) of the amorphized layers. First, Binary Collision Approximation (BCA) simulations are used to calculate the damage caused by every ion. The evolution of this damage over time is simulated using non-lattice, or Object, KMC (OKMC) in which only defects are considered. SPER is simulated through a Lattice KMC (LKMC) approach, being able to follow the evolution of the lattice atoms forming the amorphous/crystalline interface. With the amorphization model developed in this work, implemented into a multi-material process simulator, all these processes can be simulated. It has been possible to understand damage accumulation, from point defect generation up to full amorphous layers formation. This accumulation occurs in three differentiated regimes, starting at a slow formation rate of the damage regions, followed by a fast local relaxation of areas into the amorphous phase where both crystalline and amorphous phases coexist, ending in full amorphization of extended layers, where the accumulation rate saturates. This transition occurs when the damage concentration overcomes a certain threshold value, which is independent of the implantation conditions. When implanting ions at relatively high temperatures, dynamic annealing takes place, healing the previously induced damage and establishing a competition between damage generation and its dissolution. These effects become specially important for light ions, as B, for which the created damage is more diluted, smaller and differently distributed than that caused by implanting heavier ions, as Ge. This description successfully reproduces damage quantity and extension of amorphous layers caused by means of ion implantation reported in the literature. Recrystallization velocity of the previously amorphized sample strongly depends on the substrate orientation. The presented LKMC model has been able to explain these differences between orientations through a simple model, dominated by one only activation energy and different prefactors for the SPER rates depending on the neighboring configuration of the recrystallizing atoms. Twin defects formation appears as a consequence of this description, and are predominant for (111)Ge oriented grown substrates. This model is able to reproduce experimental results for different orientations, temperatures and times of evolution of the amorphous/crystalline interface reported by different authors. Preliminary parameterizations for the activation strain tensors are able to also provide a good match between simulations and reported experimental results for SPER velocities at different temperatures under the appliance of hydrostatic pressure. The studies presented in this thesis have helped to achieve a greater understanding of damage generation, evolution, amorphization and SPER mechanisms in Ge, and also provide a useful tool to continue research in this field.
Resumo:
The performance of tandem stacks of Group III?V multijunction solar cells continues to improve rapidly, both through improved performance of the individual cells in the stack and throughi ncrease in the number of stacked cells. As the radiative efficiency of these individual cells increases, radiative coupling between the stacked cells becomes an increasingly important factor not only in cell design, but also in accurate efficiency measurement and in determining performance of cells and systems under varying spectral conditions in the field. Past modeling has concentrated on electroluminescent coupling between the cells, although photoluminescent coupling is shown to be important for cells operating near their maximum power point voltage or below or when junction defect recombination is significant. Extension of earlier models i sproposed to allow this non-negligible component of luminescent coupling to be included. Therefined model is validated by measurement of the closely related external emission from both single and double junction cells.
Resumo:
An integrated understanding of molecular and developmental biology must consider the large number of molecular species involved and the low concentrations of many species in vivo. Quantitative stochastic models of molecular interaction networks can be expressed as stochastic Petri nets (SPNs), a mathematical formalism developed in computer science. Existing software can be used to define molecular interaction networks as SPNs and solve such models for the probability distributions of molecular species. This approach allows biologists to focus on the content of models and their interpretation, rather than their implementation. The standardized format of SPNs also facilitates the replication, extension, and transfer of models between researchers. A simple chemical system is presented to demonstrate the link between stochastic models of molecular interactions and SPNs. The approach is illustrated with examples of models of genetic and biochemical phenomena where the UltraSAN package is used to present results from numerical analysis and the outcome of simulations.
Resumo:
The function of a protein generally is determined by its three-dimensional (3D) structure. Thus, it would be useful to know the 3D structure of the thousands of protein sequences that are emerging from the many genome projects. To this end, fold assignment, comparative protein structure modeling, and model evaluation were automated completely. As an illustration, the method was applied to the proteins in the Saccharomyces cerevisiae (baker’s yeast) genome. It resulted in all-atom 3D models for substantial segments of 1,071 (17%) of the yeast proteins, only 40 of which have had their 3D structure determined experimentally. Of the 1,071 modeled yeast proteins, 236 were related clearly to a protein of known structure for the first time; 41 of these previously have not been characterized at all.
Resumo:
The ligand binding domain of the human vitamin D receptor (VDR) was modeled based on the crystal structure of the retinoic acid receptor. The ligand binding pocket of our VDR model is spacious at the helix 11 site and confined at the β-turn site. The ligand 1α,25-dihydroxyvitamin D3 was assumed to be anchored in the ligand binding pocket with its side chain heading to helix 11 (site 2) and the A-ring toward the β-turn (site 1). Three residues forming hydrogen bonds with the functionally important 1α- and 25-hydroxyl groups of 1α,25-dihydroxyvitamin D3 were identified and confirmed by mutational analysis: the 1α-hydroxyl group is forming pincer-type hydrogen bonds with S237 and R274 and the 25-hydroxyl group is interacting with H397. Docking potential for various ligands to the VDR model was examined, and the results are in good agreement with our previous three-dimensional structure-function theory.
Resumo:
Convection in the tropics is observed to involve a wide-ranging hierarchy of scales from a few kilometers to the planetary scales and also has a profound impact on short-term climate. The mechanisms responsible for this behavior present a major unsolved problem. A promising emerging approach to address these issues is cloud-resolving modeling. Here a family of numerical models is introduced specifically to model the feedback of small-scale deep convection on tropical planetary waves and tropical circulation in a highly efficient manner compatible with the approach through cloud-resolving modeling. Such a procedure is also useful for theoretical purposes. The basic idea in the approach is to use low-order truncation in the meriodonal direction through Gauss–Hermite quadrature projected onto a simple discrete radiation condition. In this fashion, the cloud-resolving modeling of equatorially trapped planetary waves reduces to the solution of a small number of purely zonal two-dimensional wave systems along a few judiciously chosen meriodonal layers that are coupled only by some additional source terms. The approach is analyzed in detail with full mathematical rigor for linearized equatorial primitive equations with source terms.
Resumo:
We describe the time evolution of gene expression levels by using a time translational matrix to predict future expression levels of genes based on their expression levels at some initial time. We deduce the time translational matrix for previously published DNA microarray gene expression data sets by modeling them within a linear framework by using the characteristic modes obtained by singular value decomposition. The resulting time translation matrix provides a measure of the relationships among the modes and governs their time evolution. We show that a truncated matrix linking just a few modes is a good approximation of the full time translation matrix. This finding suggests that the number of essential connections among the genes is small.