1000 resultados para Modelagem estrutural
Resumo:
A escolha da cidade do Rio de Janeiro como sede de grandes eventos esportivos mundiais, a Copa do Mundo de Futebol de 2014 e os Jogos Olímpicos de 2016, colocou-a no centro de investimentos em infraestrutura, mobilidade urbana e segurança pública, com consequente impacto no mercado imobiliário, tanto de novos lançamentos de empreendimentos, quanto na revenda de imóveis usados. Acredita-se que o preço de um imóvel dependa de uma relação entre suas características estruturais como quantidade de quartos, suítes, vagas de garagem, presença de varanda, tal como sua localização, proximidade com centros de trabalho, entretenimento e áreas valorizadas ou degradadas. Uma das técnicas para avaliar a contribuição dessas características para a formação do preço do imóvel, conhecido na Econométrica como Modelagem Hedônica de Preços, é uma aplicação de regressão linear multivariada onde a variável dependente é o preço e as variáveis independentes, as respectivas características que deseja-se modelar. A utilização da regressão linear implica em observar premissas que devem ser atendidas para a confiabilidade dos resultados a serem analisados, tais como independência e homoscedasticidade dos resíduos e não colinearidade entre as variáveis independentes. O presente trabalho objetiva aplicar a modelagem hedônica de preços para imóveis localizados na cidade do Rio de Janeiro em um modelo de regressão linear multivariada, em conjunto com outras fontes de dados para a construção de variáveis de acessibilidade e socioambiental a fim de verificar a relação de importância entre elas para a formação do preço e, em particular, exploramos brevemente a tendência de preços em função da distância a favelas. Em atenção aos pré-requisitos observados para a aplicação de regressão linear, verificamos que a premissa de independência dos preços não pode ser atestada devido a constatação da autocorrelação espacial entre os imóveis, onde não apenas as características estruturais e de acessibilidade são levadas em consideração para a precificação do bem, mas principalmente a influência mútua que os imóveis vizinhos exercem um ao outro.
Resumo:
Modelos para detecção de fraude são utilizados para identificar se uma transação é legítima ou fraudulenta com base em informações cadastrais e transacionais. A técnica proposta no estudo apresentado, nesta dissertação, consiste na de Redes Bayesianas (RB); seus resultados foram comparados à técnica de Regressão Logística (RL), amplamente utilizada pelo mercado. As Redes Bayesianas avaliadas foram os classificadores bayesianos, com a estrutura Naive Bayes. As estruturas das redes bayesianas foram obtidas a partir de dados reais, fornecidos por uma instituição financeira. A base de dados foi separada em amostras de desenvolvimento e validação por cross validation com dez partições. Naive Bayes foram os classificadores escolhidos devido à simplicidade e a sua eficiência. O desempenho do modelo foi avaliado levando-se em conta a matriz de confusão e a área abaixo da curva ROC. As análises dos modelos revelaram desempenho, levemente, superior da regressão logística quando comparado aos classificadores bayesianos. A regressão logística foi escolhida como modelo mais adequado por ter apresentado melhor desempenho na previsão das operações fraudulentas, em relação à matriz de confusão. Baseada na área abaixo da curva ROC, a regressão logística demonstrou maior habilidade em discriminar as operações que estão sendo classificadas corretamente, daquelas que não estão.
Resumo:
A atual crise econômica internacional mostrou que o combate a hiatos do produto utilizando apenas a política monetária pode não ser suficiente. Neste contexto, questões sobre a eficácia de estímulos fiscais temporários como política anticíclica foram levantadas, e adicionalmente quais estímulos fiscais seriam mais benéficos às economias. Este trabalho desenvolveu um modelo estrutural DSGE com características e calibrações para a economia brasileira. O objetivo era realizar um exercício com choques fiscais expansionistas, de modo a analisar seus multiplicadores fiscais. Os resultados sugerem que o impacto de gastos correntes do governo obteve melhor multiplicador fiscal, tanto no curto quanto no longo prazo, porém teve efeitos acumulativos decrescentes. Por outro lado, o choque de diminuição da alíquota dos impostos sobre consumo obteve baixos multiplicadores fiscais a curto prazo, porém com efeitos crescentes a longo prazo, alcançando multiplicadores de longo prazo similares aos dos gastos do governo.