817 resultados para Mitochondrial damage
Resumo:
We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of metastable states. For systems evolving under identical but arbitrarily correlated noises, we demonstrate that there exists a critical temperature T0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order parameter, such as (i) independence of the initial damage; (ii) independence of the class of initial condition; and (iii) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as metastable states) in the thermodynamic limit consequence of the ruggedness of the free-energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading an interesting tool to probe the ruggedness of the configurational landscape.
Resumo:
Mitochondrial dysfunction is one of the possible mechanisms by which azole resistance can occur in Candida glabrata. Cells with mitochondrial DNA deficiency (so-called "petite mutants") upregulate ATP binding cassette (ABC) transporter genes and thus display increased resistance to azoles. Isolation of such C. glabrata mutants from patients receiving antifungal therapy or prophylaxis has been rarely reported. In this study, we characterized two sequential and related C. glabrata isolates recovered from the same patient undergoing azole therapy. The first isolate (BPY40) was azole susceptible (fluconazole MIC, 4 μg/ml), and the second (BPY41) was azole resistant (fluconazole MIC, >256 μg/ml). BPY41 exhibited mitochondrial dysfunction and upregulation of the ABC transporter genes C. glabrata CDR1 (CgCDR1), CgCDR2, and CgSNQ2. We next assessed whether mitochondrial dysfunction conferred a selective advantage during host infection by testing the virulence of BPY40 and BPY41 in mice. Surprisingly, even with in vitro growth deficiency compared to BPY40, BPY41 was more virulent (as judged by mortality and fungal tissue burden) than BPY40 in both systemic and vaginal murine infection models. The increased virulence of the petite mutant correlated with a drastic gain of fitness in mice compared to that of its parental isolate. To understand this unexpected feature, genome-wide changes in gene expression driven by the petite mutation were analyzed by use of microarrays during in vitro growth. Enrichment of specific biological processes (oxido-reductive metabolism and the stress response) was observed in BPY41, all of which was consistent with mitochondrial dysfunction. Finally, some genes involved in cell wall remodelling were upregulated in BPY41 compared to BPY40, which may partially explain the enhanced virulence of BPY41. In conclusion, this study shows for the first time that mitochondrial dysfunction selected in vivo under azole therapy, even if strongly affecting in vitro growth characteristics, can confer a selective advantage under host conditions, allowing the C. glabrata mutant to be more virulent than wild-type isolates.
Resumo:
Summary
Resumo:
Highly-active antiretroviral therapy (HAART) can induce a characteristic lipodystrophy syndrome characterized by peripheral fat wasting and central adiposity, usually associated with hyperlipidaemia and insulin resistance [1,2]. Indirect data have led some authors to propose that mitochondrial dysfunction could play a role in this syndrome [3,4].To date, as recently outlined by Kakuda et al. [5] in this journal, HIV-infected patients developing lipodystrophy have not been studied for mitochondrial changes or respiratory chain capacity...
Resumo:
A 38 year old woman having chronic intestinal pseudoobstruction associated with mitochondrial myopathy is reported. The clinical and radiographic features suggested the diagnosis of chronic intestinal pseudoobstruction. Muscular atrophy and ophthalmoplegia led to muscle biopsy, which disclosed accumulation of normal and abnormal mitochondria ('ragged red fibres'), characteristic of mitochondrial myopathy.
Resumo:
Skeletal muscle mitochondrial (Mito) and lipid droplet (Lipid) content are often measured in human translational studies. Stereological point counting allows computing Mito and Lipid volume density (Vd) from micrographs taken with transmission electron microscopes. Former studies are not specific as to the size of individual squares that make up the grids, making reproducibility difficult, particularly when different magnifications are used. Our objective was to determine which size grid would be best at predicting fractional volume efficiently without sacrificing reliability and to test a novel method to reduce sampling bias. Methods: ten subjects underwent vastus lateralis biopsies. Samples were fixed, embedded, and cut longitudinally in ultrathin sections of 60 nm. Twenty micrographs from the intramyofibrillar region were taken per subject at Ã-33,000 magnification. Different grid sizes were superimposed on each micrograph: 1,000 Ã- 1,000 nm, 500 Ã- 500 nm, and 250 Ã- 250 nm. Results: mean Mito and Lipid Vd were not statistically different across grids. Variability was greater when going from 1,000 Ã- 1,000 to 500 Ã- 500 nm grid than from 500 Ã- 500 to 250 Ã- 250 nm grid. Discussion: this study is the first to attempt to standardize grid size while keeping with the conventional stereology principles. This is all in hopes of producing replicable assessments that can be obtained universally across different studies looking at human skeletal muscle mitochondrial and lipid droplet content.
Resumo:
It is widely accepted that protein oxidation is involved in a variety of diseases, including neurodegenerative diseases. Especially during aging, a reduction in anti-oxidant defence mechanisms leads to an increased formation of free radical oxygen species and consequently results in a damage of proteins, including mitochondrial and synaptic ones. Even those proteins involved in repair and protein clearance via the ubiquitin proteasome and lysosomal system are subject to damage and show a reduced function. Here, we will discuss a variety of mechanisms and provide examples where cognition is affected and where repair mechanisms are no longer sufficient to compensate for a dysfunction of damaged proteins or even may become toxic. Next to physiological deficits, an accumulation of deficient proteins in aggresomes may occur and result in a formation of pathological hallmark structures typical for aging and disease. A major challenge is how to prevent aberrant oxidation, given that oxidation plays an essential role in aging and neurodegenerative diseases. Particularly interesting are the possibilities to reduce the formation of radical oxygen species leading to a dysfunction of protein repair and protein clearance, or to a formation of toxic byproducts accelerating neurodegeneration.
Resumo:
In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.
Resumo:
Molecular phylogeny of soricid shrews (Soricidae, Eulipotyphla, Mammalia) based on 1140 bp mitochondrial cytochrome b gene (cytb) sequences was inferred by the maximum likelihood (ML) method. All 13 genera of extant Soricinae and two genera of Crocidurinae were included in the analyses. Anourosorex was phylogenetically distant from the main groupings within Soricinae and Crocidurinae in the ML tree. Thus, it could not be determined to which subfamily Anourosorex should be assigned: Soricinae, Crocidurinae or a new subfamily. Soricinae (excluding Anourosorex) should be divided into four tribes: Neomyini, Notiosoricini, Soricini and Blarinini. However, monophyly of Blarinini was not robust in the present data set. Also, branching orders among tribes of Soricinae and those among genera of Neomyini could not be determined because of insufficient phylogenetic information of the cytb sequences. For water shrews of Neomyini (Chimarrogale, Nectogale and Neomys), monophyly of Neomys and the Chimarrogale-Nectogale group could not be verified, which implies the possibility of multiple origins for the semi-aquatic mode of living among taxa within Neomyini. Episoriculus may contain several separate genera. Blarinella was included in Blarinini not Soricini, based on the cytb sequences, but the confidence level was rather low; hence more phylogenetic information is needed to determine its phylogenetic position. Furthermore, some specific problems of taxonomy of soricid shrews were clarified, for example phylogeny of local populations of Notiosorex crawfordi, Chimarrogale himalayica and Crocidura attenuata.
Resumo:
African clawed frogs of the widespread polytypic species Xenopus laevis Daudin, 1802 (ranging large parts of sub-Saharan Africa) have been spreading since the 1940s, and have established reproductive populations in Europe, Asia and the Americas, where they can have negative impact as competitors of native amphibians and as disease vectors for chytridomycosis or ranaviruses. Here we use two mitochondrial (cytochrome b, 16S rDNA) and one nuclear (RAG 1: Recombination Associated Gene 1) DNA markers to infer the potential origin of invasive clawed frogs from Sicily that represent the largest invasive population in Europe. Identical mtDNA haplotypes match with those of Xenopus laevis, and Sicilian clawed frogs very probably belong to a lineage from the Cape Region of South Africa, most likely originating from a laboratory stock. Nuclear data support this conclusion. Identical mtDNA sequences (cyt b, 16S) of frogs sampled across their range in Sicily suggest the occurrence of a single source population and a potential bottleneck at their release, but faster evolving multilocus nuclear data (microsatellites, SNPs) on the population genetics would be important in the future to better support this hypothesis
Resumo:
The 2011 Missouri River flooding caused significant damage to many geo-infrastructure systems including levees, bridge abutments/foundations, paved and unpaved roadways, culverts, and embankment slopes in western Iowa. The flooding resulted in closures of several interchanges along Interstate 29 and of more than 100 miles of secondary roads in western Iowa, causing severe inconvenience to residents and losses to local businesses. The main goals of this research project were to assist county and city engineers by deploying and using advanced technologies to rapidly assess the damage to geo-infrastructure and develop effective repair and mitigation strategies and solutions for use during future flood events in Iowa. The research team visited selected sites in western Iowa to conduct field reconnaissance, in situ testing on bridge abutment backfills that were affected by floods, flooded and non-flooded secondary roadways, and culverts. In situ testing was conducted shortly after the flood waters receded, and several months after flooding to evaluate recovery and performance. Tests included falling weight deflectometer, dynamic cone penetrometer, three-dimensional (3D) laser scanning, ground penetrating radar, and hand auger soil sampling. Field results indicated significant differences in roadway support characteristics between flooded and non-flooded areas. Support characteristics in some flooded areas recovered over time, while others did not. Voids were detected in culvert and bridge abutment backfill materials shortly after flooding and several months after flooding. A catalog of field assessment techniques and 20 potential repair/mitigation solutions are provided in this report. A flow chart relating the damages observed, assessment techniques, and potential repair/mitigation solutions is provided. These options are discussed for paved/unpaved roads, culverts, and bridge abutments, and are applicable for both primary and secondary roadways.
Resumo:
Hepatitis C virus (HCV) infection induces the endogenous interferon (IFN) system in the liver in some but not all patients with chronic hepatitis C (CHC). Patients with a pre-activated IFN system are less likely to respond to the current standard therapy with pegylated IFN-alpha. Mitochondrial antiviral signaling protein (MAVS) is an important adaptor molecule in a signal transduction pathway that senses viral infections and transcriptionally activates IFN-beta. The HCV NS3-4A protease can cleave and thereby inactivate MAVS in vitro, and, therefore, might be crucial in determining the activation status of the IFN system in the liver of infected patients. We analyzed liver biopsies from 129 patients with CHC to investigate whether MAVS is cleaved in vivo and whether cleavage prevents the induction of the endogenous IFN system. Cleavage of MAVS was detected in 62 of the 129 samples (48%) and was more extensive in patients with a high HCV viral load. MAVS was cleaved by all HCV genotypes (GTs), but more efficiently by GTs 2 and 3 than by GTs 1 and 4. The IFN-induced Janus kinase (Jak)-signal transducer and activator of transcription protein (STAT) pathway was less frequently activated in patients with cleaved MAVS, and there was a significant inverse correlation between cleavage of MAVS and the expression level of the IFN-stimulated genes IFI44L, Viperin, IFI27, USP18, and STAT1. We conclude that the pre-activation status of the endogenous IFN system in the liver of patients with CHC is in part regulated by cleavage of MAVS.