954 resultados para Mineral water, bacterial contamination, coliforms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examines a matrix of synthetic water samples designed to include conditions that favour brominated disinfection by-product (Br-DBP) formation, in order to provide predictive models suitable for high Br-DBP forming waters such as salinity-impacted waters. Br-DBPs are known to be more toxic than their chlorinated analogues, in general, and their formation may be favoured by routine water treatment practices such as coagulation/flocculation under specific conditions; therefore, circumstances surrounding their formation must be understood. The chosen factors were bromide concentration, mineral alkalinity, bromide to dissolved organic carbon (Br/DOC) ratio and Suwannee River natural organic matter concentration. The relationships between these parameters and DBP formation were evaluated by response surface modelling of data generated using a face-centred central composite experimental design. Predictive models for ten brominated and/or chlorinated DBPs are presented, as well as models for total trihalomethanes (tTHMs) and total dihaloacetonitriles (tDHANs), and bromide substitution factors for the THMs and DHANs classes. The relationships described revealed that increasing alkalinity and increasing Br/DOC ratio were associated with increasing bromination of THMs and DHANs, suggesting that DOC lowering treatment methods that do not also remove bromide such as enhanced coagulation may create optimal conditions for Br-DBP formation in waters in which bromide is present.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of several pesticides were monitored in a paddy block and in the Kose river, which drains a paddy catchment in Fukuoka prefecture, Japan. Detailed water management in the block was also monitored to evaluate its effect on the pesticide contamination. The concentrations of applied pesticides in both block irrigation channel and drainage canal increased to tens of μg/L shortly after their applications. The increase in pesticide concentrations was well correlated with the open of irrigation and drainage gates in the pesticide-applied paddy plots only 1–3 days after pesticide application. High concentration of other pesticides, mainly herbicides, was also observed in the inflow irrigation and drainage waters, confirming the popularity of early irrigation and drainage after pesticide application in the area. The requirement of holding water after pesticide application (as a best management practice) issued by the authority was thus not properly followed. In a larger scale of the paddy catchment, the concentration of pesticides also increased significantly to several μg/L in the water of the Kose river shortly after the start of the pesticide application period either in downstream or mid–upstream areas, confirming the effect of current water management to the water quality. More extension and enforcement on water management should be done in order to control pesticide pollution from rice cultivation in Japan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of Thiobacillus ferrooxidans, their attachment to sulfide minerals and detachment during bacterial leaching are discussed in this paper. Growth of the bacteria has been measured by cell count of the supernatants of the mineral suspensions while attachment to minerals and detachment were measured by periodic protein estimations for both the solid and liquid phases, Even in the absence of the nutrients, bacterial growth occurs and increases the available cell population during leaching; such growth was greater in sphalerite suspensions than in galena suspensions, The bacterial attachment studies suggest that more cells are attached onto galena mineral surface than to sphalerite surface. The mechanisms of bacterial attachment and detachment are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enumeration of adhered cells of Thiobacillus ferrooxidans on sulphide minerals through protein assay poses problems due to interference from dissolved mineral constituents. The manner in which sulphide minerals such as pyrite, chalcopyrite, sphalerite, arsenopyrite and pyrrhotite interfere with bacterial protein estimation is demonstrated. Such interferences can be minimised either through dilution or addition of H2O2 to the filtrate after hot alkaline digestion of the biotreated mineral samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cotton and Grain Adoption Program of the Queensland Rural Water Use Efficiency Initiative is targeting five major irrigation regions in the state with the objective to develop better irrigation water use efficiency (WUE) through the adoption of best management practices in irrigation. The major beneficiaries of the program will be industries, irrigators and local communities. The benefits will flow via two avenues: increased production and profit resulting from improved WUE and improved environmental health as a consequence of greatly reduced runoff of irrigation tailwater into rivers and streams. This in turn will reduce the risk of nutrient and pesticide contamination of waterways. As a side effect, the work is likely to contribute to an improved public image of the cotton and grain industries. In each of the five regions, WUE officers have established grower groups to assist in providing local input into the specific objectives of extension and demonstration activities. The groups also assist in developing growers' perceptions of ownership of the work. Activities are based around four on-farm demonstration sites in each region where irrigation management techniques and hardware are showcased. A key theme of the program is monitoring water use. This is applied both to on-farm storage and distribution as well as to application methods and in-field management. This paper describes the project, its activities and successes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since 1989, researchers with the Department of Primary Industries and Fisheries (DPI&F) in Queensland, Australia, have successfully used controlled low-water exchange green-water cultures to rear the larvae of estuarine fishes and crustaceans through to metamorphosis. High survivals and excellent fry condition have been achieved for several commercially important endemic species produced for various projects. They include barramundi or sea bass, Lates calcarifer, Australian bass, Macquaria novemaculeata, dusky flathead, Platycephalus fuscus, sand whiting, Sillago ciliata, red sea bream or snapper, Pagrus auratus, banana prawn, Fenneropenaeus merguiensis, and others. The consistent success of our standardised and relatively simple approach at different localities has led to it being incorporated into general fingerling production practices at several establishments in Australia. Although post-metamorphosis rearing methods have differed for each species investigated, due to various biological and behavioural traits and project requirements, these larval rearing methods have been successful with few species-specific modifications. Initially modelled on the Taiwanese approach to rearing Penaeids in aerated low-water exchange cultures, the approach similarly appears to rely on a beneficial assemblage of micro-organisms. Conceptually, these micro-organisms may include a mixture of the air-borne primary invaders of pure phytoplankton cultures when exposed to outdoor conditions. Whilst this would vary with different sites, our experiences with these methods have consistently been favourable. Mass microalgal cultures with eco-physiological youth are used to regularly augment larval fish cultures so that rearing conditions simulate an exponential growth-phase microalgal bloom. Moderate to heavy aeration prevents settlement of particulate matter and encourages aerobic bacterial decomposition of wastes. The green-water larval rearing approach described herein has demonstrated high practical utility in research and commercial applications, and has greatly simplified marine finfish hatchery operations whilst generally lifting production capacities for metamorphosed fry in Australia. Its potential uses in areas of aquaculture other than larviculture are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aflatoxins are highly carcinogenic mycotoxins produced by two fungi, Aspergillus flavus and A. parasiticus, under specific moisture and temperature conditions before harvest and/or during storage of a wide range of crops including maize. Modelling of interactions between host plant and environment during the season can enable quantification of preharvest aflatoxin risk and its potential management. A model was developed to quantify climatic risks of aflatoxin contamination in maize using principles previously used for peanuts. The model outputs an aflatoxin risk index in response to seasonal temperature and soil moisture during the maize grain filling period using the APSIM's maize module. The model performed well in simulating climatic risk of aflatoxin contamination in maize as indicated by a significant R2 (P ≤ 0.01) between aflatoxin risk index and the measured aflatoxin B1 in crop samples, which was 0.69 for a range of rainfed Australian locations and 0.62 when irrigated locations were also included in the analysis. The model was further applied to determine probabilities of exceeding a given aflatoxin risk in four non-irrigated maize growing locations of Queensland using 106 years of historical climatic data. Locations with both dry and hot climates had a much higher probability of higher aflatoxin risk compared with locations having either dry or hot conditions alone. Scenario analysis suggested that under non-irrigated conditions the risk of aflatoxin contamination could be minimised by adjusting sowing time or selecting an appropriate hybrid to better match the grain filling period to coincide with lower temperature and water stress conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

No-tillage (NT) practice, where straw is retained on the soil surface, is increasingly being used in cereal cropping systems in Australia and elsewhere. Compared to conventional tillage (CT), where straw is mixed with the ploughed soil, NT practice may reduce straw decomposition, increase nitrogen immobilisation and increase organic carbon in the soil. This study examined 15N-labelled wheat straw (stubble) decomposition in four treatments (NT v. CT, with N rates of 0 and 75 kg/ha.year) and assessed the tillage and fertiliser N effects on mineral N and organic C and N levels over a 10-year period in a field experiment. NT practice decreased the rate of straw decomposition while fertiliser N application increased it. However, there was no tillage practice x N interaction. The mean residence time of the straw N in soil was more than twice as long under the NT (1.2 years) as compared to the CT practice (0.5 years). In comparison, differences in mean residence time due to N fertiliser treatment were small. However, tillage had generally very little effect on either the amounts of mineral N at sowing or soil organic C (and N) over the study period. While application of N fertiliser increased mineral N, it had very little effect on organic C over a 10-year period. Relatively rapid decomposition of straw and short mean residence time of straw N in a Vertisol is likely to have very little long-term effect on N immobilisation and organic C level in an annual cereal cropping system in a subtropical, semiarid environment. Thus, changing the tillage practice from CT to NT may not necessitate additional N requirement unless use is made of additional stored water in the soil or mineral N loss due to increased leaching is compensated for in N supply to crops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herbicide contamination from agriculture is a major issue worldwide, and has been identified as a threat to freshwater and marine environments in the Great Barrier Reef World Heritage Area in Australia. The triazine herbicides are of particular concern because of potential adverse effects, both on photosynthetic organisms and upon vertebrate development. To date a number of bioremediation strategies have been proposed for triazine herbicides, but are unlikely to be implemented due to their reliance upon the release of genetically modified organisms. We propose an alternative strategy using a free-enzyme bioremediant, which is unconstrained by the issues surrounding the use of live organisms. Here we report an initial field trial with an enzyme-based product, demonstrating that the technology is technically capable of remediating water bodies contaminated with the most common triazine herbicide, atrazine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary crops provide a means of assimilating some effluent nitrogen from eutrophic shrimp farm settlement ponds. However, a more important role may be their stimulation of beneficial bacterial nitrogen removal processes. In this study, bacterial biomass, growth and nitrogen removal capacity were quantified in shrimp farm effluent treatment systems containing vertical artificial substrates and either the banana shrimp Penaeus merguiensis (de Man) or the grey mullet, Mugil cephalus L. Banana shrimp were found to actively graze biofilm on the artificial substrates and significantly reduced bacterial biomass relative to a control (24.5 ± 5.6mgCm−2 and 39.2 ± 8.7mgCm−2, respectively). Bacterial volumetric growth rates, however, were significantly increased in the presence of the shrimp relative to the control 45.2±11.3mgCm−2 per day and 22.0±4.3mgCm−2 per day, respectively). Specific growth rate, or growth rate per cell, of bacteria was therefore appreciably stimulated by the banana shrimp. Nitrate assimilation was found to be significantly higher on grazed substrate biofilm relative to the control (223±54 mgNm−2 per day and 126±36 mg Nm−2 per day, respectively), suggesting that increased bacterial growth rate does relate to enhanced nitrogen uptake. Regulated banana shrimp feeding activity therefore can increase the rate of newbacterial biomass production and also the capacity for bacterial effluent nitrogen assimilation. Mullet had a negligible influence on the biofilm associated with the artificial substrate but reduced sediment bacterial biomass (224 ± 92 mgCm−2) relative to undisturbed sediment (650 ± 254 mgCm−2). Net, or volumetric bacterial growth in the sediment was similar in treatments with and without mullet, suggesting that the growth rate per cell of bacteria in grazed sediments was enhanced. Similar rates of dissolved nitrogen mineralisation werefound in sediments with and without mullet but nitrificationwas reduced. Presence of mullet increased water column suspended solids concentrations, water column bacterial growth and dissolved nutrient uptake. This study has shown that secondary crops, particularly banana shrimp, can play a stimulatory role in the bacterial processing of effluent nitrogen in eutrophic shrimp effluent treatment systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My work describes two sectors of the human bacterial environment: 1. The sources of exposure to infectious non-tuberculous mycobacteria. 2. Bacteria in dust, reflecting the airborne bacterial exposure in environments protecting from or predisposing to allergic disorders. Non-tuberculous mycobacteria (NTM) transmit to humans and animals from the environment. Infection by NTM in Finland has increased during the past decade beyond that by Mycobacterium tuberculosis. Among the farm animals, porcine mycobacteriosis is the predominant NTM disease in Finland. Symptoms of mycobacteriosis are found in 0.34 % of slaughtered pigs. Soil and drinking water are suspected as sources for humans and bedding materials for pigs. To achieve quantitative data on the sources of human and porcine NTM exposure, methods for quantitation of environmental NTM are needed. We developed a quantitative real-time PCR method, utilizing primers targeted at the 16S rRNA gene of the genus of Mycobacterium. With this method, I found in Finnish sphagnum peat, sandy soils and mud high contents of mycobacterial DNA, 106 to 107 genome equivalents per gram. A similar result was obtained by a method based on the Mycobacterium-specific hybridization of 16S rRNA. Since rRNA is found mainly in live cells, this result shows that the DNA detected by qPCR mainly represented live mycobacteria. Next, I investigated the occurrence of environmental mycobacteria in the bedding materials obtained from 5 pig farms with high prevalence (>4 %) of mycobacteriosis. When I used for quantification the same qPCR methods as for the soils, I found that piggery samples contained non-mycobacterial DNA that was amplified in spite of several mismatches with the primers. I therefore improved the qPCR assay by designing Mycobacterium-specific detection probes. Using the probe qPCR assay, I found 105 to 107 genome equivalents of mycobacterial DNA in unused bedding materials and up to 1000 fold more in the bedding collected after use in the piggery. This result shows that there was a source of mycobacteria in the bedding materials purchased by the piggery and that mycobacteria increased in the bedding materials during use in the piggery. Allergic diseases have reached epidemic proportions in urbanized countries. At the same time, childhood in rural environment or simple living conditions appears to protect against allergic disorders. Exposure to immunoreactive microbial components in rural environments seems to prevent allergies. I searched for differences in the bacterial communities of two indoor dusts, an urban house dust shown to possess immunoreactivity of the TH2-type and a farm barn dust with TH1-activity. The immunoreactivities of the dusts were revealed by my collaborators, in vitro in human dendritic cells and in vivo in mouse. The dusts accumulated >10 years in the respiratory zone (>1.5 m above floor), thus reflecting the long-term content of airborne bacteria at the two sites. I investigated these dusts by cloning and sequencing of bacterial 16S rRNA genes from dust contained DNA. From the TH2-active urban house dust, I isolated 139 16S rRNA gene clones. The most prevalent genera among the clones were Corynebacterium (5 species, 34 clones), Streptococcus (8 species, 33 clones), Staphylococcus (5 species, 9 clones) and Finegoldia (1 species, 9 clones). Almost all of these species are known as colonizers of the human skin and oral cavity. Species of Corynebacterium and Streptococcus have been reported to contain anti-inflammatory lipoarabinomannans and immunmoreactive beta-glucans respectively. Streptococcus mitis, found in the urban house dust is known as an inducer of TH2 polarized immunity, characteristic of allergic disorders. I isolated 152 DNA clones from the TH1-active farm barn dust and found species quite different from those found from the urban house dust. Among others, I found DNA clones representing Bacillus licheniformis, Acinetobacter lwoffii and Lactobacillus each of which was recently reported to possess anti-allergy immunoreactivity. Moreover, the farm barn dust contained dramatically higher bacterial diversity than the urban house dust. Exposure to this dust thus stimulated the human dendritic cells by multiple microbial components. Such stimulation was reported to promote TH1 immunity. The biodiversity in dust may thus be connected to its immunoreactivity. Furthermore, the bacterial biomass in the farm barn dust consisted of live intact bacteria mainly. In the urban house dust only ~1 % of the biomass appeared as intact bacteria, as judged by microscoping. Fragmented microbes may possess bioactivity different from that of intact cells. This was recently shown for moulds. If this is also valid for bacteria, the different immunoreactivities of the two dusts may be explained by the intactness of dustborne bacteria. Based on these results, we offer three factors potentially contributing to the polarized immunoreactivities of the two dusts: (i) the species-composition, (ii) the biodiversity and (iii) the intactness of the dustborne bacterial biomass. The risk of childhood atopic diseases is 4-fold lower in the Russian compared with the Finnish Karelia. This difference across the country border is not explainable by different geo-climatic factors or genetic susceptibilities of the two populations. Instead, the explanation must be lifestyle-related. It has already been reported that the microbiological quality of drinking water differs on the two sides of the borders. In collaboration with allergists, I investigated dusts collected from homes in the Russian Karelia and in the Finnish Karelia. I found that bacterial 16S rRNA genes cloned from the Russian Karelian dusts (10 homes, 234 clones) predominantly represented Gram-positive taxa (the phyla Actinobacteria and Firmicutes, 67%). The Russian Karelian dusts contained nine-fold more of muramic acid (60 to 70 ng mg-1) than the Finnish Karelian dusts (3 to 11 ng mg-1). Among the DNA clones isolated from the Finnish side (n=231), Gram-negative taxa (40%) outnumbered the Gram-positives (34%). Out of the 465 DNA clones isolated from the Karelian dusts, 242 were assigned to cultured validly described bacterial species. In Russian Karelia, animal-associated species e.g. Staphylococcus and Macrococcus were numerous (27 clones, 14 unique species). This finding may connect to the difference in the prevalence of allergy, as childhood contacts with pets and farm animals have been connected with low allergy risk. Plant-associated bacteria and plant-borne 16S rRNA genes (chloroplast) were frequent among the DNA clones isolated from the Finnish Karelia, indicating components originating from plants. In conclusion, my work revealed three major differences between the bacterial communtites in the Russian and in the Finnish Karelian homes: (i) the high prevalence of Gram-positive bacteria on the Russian side and of Gram-negative bacteria on the Finnish side and (ii) the rich presence of animal-associated bacteria on the Russian side whereas (iii) plant-associated bacteria prevailed on the Finnish side. One or several of these factors may connect to the differences in the prevalence of allergy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An overwhelming majority of all the research on soil phosphorus (P) has been carried out with soil samples taken from the surface soils only, and our understanding of the forms and the reactions of P at a soil profile scale is based on few observations. In Finland, the interest in studying the P in complete soil profiles has been particularly small because of the lack of tradition in studying soil genesis, morphology, or classification. In this thesis, the P reserves and the retention of orthophosphate phosphorus (PO4-P) were examined in four cultivated mineral soil profiles in Finland (three Inceptisols and one Spodosol). The soils were classified according to the U.S. Soil Taxonomy and soil samples were taken from the genetic horizons in the profiles. The samples were analyzed for total P concentration, Chang and Jackson P fractions, P sorption properties, concentrations of water-extractable P, and for concentrations of oxalate-extractable Al and Fe. Theoretical P sorption capacities and degrees of P saturation were calculated with the data from the oxalate-extractions and the P fractionations. The studied profiles can be divided into sections with clearly differing P characteristics by their master horizons Ap, B and C. The C (or transitional BC) horizons below an approximate depth of 70 cm were dominated by, assumingly apatitic, H2SO4-soluble P. The concentration of total P in the C horizons ranged from 729 to 810 mg kg-1. In the B horizons between the depths of 30 and 70 cm, a significant part of the primary acid-soluble P has been weathered and transformed to secondary P forms. A mean weathering rate of the primary P in the soils was estimated to vary between 230 and 290 g ha-1 year-1. The degrees of P saturation in the B and C horizons were smaller than 7%, and the solubility of PO4-P was negligible. The P conditions in the Ap horizons differed drastically from those in the subsurface horizons. The high concentrations of total P (689-1870 mg kg-1) in the Ap horizons are most likely attributable to long-term cultivation with positive P balances. A significant proportion of the P in the Ap horizons occurred in the NH4F- and NaOH-extractable forms and as organic P. These three P pools, together with the concentrations of oxalate-extractable Al and Fe, seem to control the dynamics of PO4-P in the soils. The degrees of P saturation in the Ap horizons were greater (8-36%) than in the subsurface horizons. This was also reflected in the sorption experiments: Only the Ap horizons were able to maintain elevated PO4-P concentrations in the solution phase − all the subsoil horizons acted as sinks for PO4-P. Most of the available sorption capacity in the soils is located in the B horizons. The results suggest that this capacity could be utilized in reducing the losses of soluble P from excessively fertilized soils by mixing highly sorptive material from the B horizons with the P-enriched surface soil. The drastic differences in the P characteristics observed between adjoining horizons have to be taken into consideration when conducting soil sampling. Sampling of subsoils has to be made according to the genetic horizons or at small depth increments. Otherwise, contrasting materials are likely to be mixed in the same sample; and the results of such samples are not representative of any material present in the studied profile. Air-drying of soil samples was found to alter the results of the sorption experiments and the water extractions. This indicates that the studies on the most labile P forms in soil should be carried out with moist samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanobacterial mass occurrences, also known as water blooms, have been associated with adverse health effects of both humans and animals. They can also be a burden to drinking water treatment facilities. Risk assessments of the blooms have generally focused on the cyanobacteria themselves and their toxins. However, heterotrophic bacteria thriving among cyanobacteria may also be responsible for many of the adverse health effects, but their role as the etiological agents of these health problems is poorly known. In addition, studies on the water purification efficiency of operating water treatment plants during cyanobacterial mass occurrences in their water sources are rare. In the present study, over 600 heterotrophic bacterial strains were isolated from natural freshwater, brackish water or from treated drinking water. The sampling sites were selected as having frequent cyanobacterial occurrences in the water bodies or in the water sources of the drinking water treatment plants. In addition, samples were taken from sites where cyanobacterial water blooms were surmised to have caused human health problems. The isolated strains represented bacteria from 57 different genera of the Gamma-, Alpha- or Betaproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Bacilli and Deinococci classes, based on their partial 16S rRNA sequences. Several isolates had no close relatives among previously isolated bacteria or cloned 16S rRNA genes of uncultivated bacteria. The results show that water blooms are associated with a diverse community of cultivable heterotrophic bacteria. Chosen subsets of the isolated strains were analysed for features such as their virulence gene content and possible effect on cyanobacterial growth. Of the putatively pathogenic haemolytic strains isolated in the study, the majority represented the genus Aeromonas. Therefore, the Aeromonas spp. strains isolated from water samples associated with adverse health effects were screened for the virulence gene types encoding for enterotoxins (ast, alt and act/aerA/hlyA), flagellin subunits (flaA/flaB), lipase (lip/pla/lipH3/alp-1) and elastase (ahyB) by PCR. The majority (90%) of the Aeromonas strains included one or more of the six screened Aeromonas virulence gene types. The most common gene type was act, which was present in 77% of the strains. The fla, ahyB and lip genes were present in 30 37% of the strains. The prevalence of the virulence genes implies that the Aeromonas may be a factor in some of the cyanobacterial associated health problems. Of the 183 isolated bacterial strains that were studied for possible effects on cyanobacterial growth, the majority (60%) either enhanced or inhibited growth of cyanobacteria. In most cases, they enhanced the growth, which implies mutualistic interactions. The results indicate that the heterotrophic bacteria have a role in the rise and fall of the cyanobacterial water blooms. The genetic and phenotypic characteristics and the ability to degrade cyanobacterial hepatotoxins of 13 previously isolated Betaproteobacteria strains, were also studied. The strains originated from Finnish lakes with frequent cyanobacterial occurrence. Tested strains degraded microcystins -LR and -YR and nodularin. The strains could not be assigned to any described bacterial genus or species based on their genetic or phenotypic features. On the basis of their characteristics a new genus and species Paucibacter toxinivorans was proposed for them. The water purification efficiency of the drinking water treatment processes during cyanobacterial water bloom in water source was assessed at an operating surface water treatment plant. Large phytoplankton, cyanobacterial hepatotoxins, endotoxins and cultivable heterotrophic bacteria were efficiently reduced to low concentrations, often below the detection limits. In contrast, small planktonic cells, including also possible bacterial cells, regularly passed though the water treatment. The passing cells may contribute to biofilm formation within the water distribution system, and therefore lower the obtained drinking water quality. The bacterial strains of this study offer a rich source of isolated strains for examining interactions between cyanobacteria and the heterotrophic bacteria associated with them. The degraders of cyanobacterial hepatotoxins could perhaps be utilized to assist the removal of the hepatotoxins during water treatment, whereas inhibitors of cyanobacterial growth might be useful in controlling cyanobacterial water blooms. The putative pathogenicity of the strains suggests that the health risk assessment of the cyanobacterial blooms should also cover the heterotrophic bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Species of the genera Rhodococcus, Gordonia and Mycobacterium are known as degraders of recalcitrant pollutants. These bacteria are good survivors in harsh environments. Due to such properties these organisms are able to occupy a wide range of environmental niches. The members of these taxa have been suggested as tools for biotechnical applications such as bioremediation and biosynthesis. At the same time several of the species are known as opportunistic human pathogens. Therefore, the detailed characterization of any isolate that has potential for biotechnological applications is very important. This thesis deals with several corynebacterial strains originating from different polluted environments: soil, water-damaged indoor walls, and drinking water distribution systems. A polyphasic taxonomic approach was applied for characterization of the isolates. We found that the strains degrading monoaromatic compounds belonged to Rhodococcus opacus, a species that has not been associated with any health problem. The taxonomic position of strain B293, used for many years in degradation research under different names, was clarified. We assigned it to the species Gordonia polyisoprenivorans. This species is classified under European Biohazard grouping 1, meaning that it is not considered a health hazard for humans. However, there are reports of catheter-associated bacteraemia caused by G. polyisoprenivorans. Our results suggested that the ability of the organism to grow on phthalate esters, used as softeners in medical plastics, may be associated with the colonization of catheters and other devices. In this thesis Mycobacterium lentiflavum, a new emerging opportunistic human pathogen, was isolated from biofilms growing in public drinking water distribution systems. Our report on isolation of M. lentiflavum from water supplies is the second report on this species from drinking water systems, which may thus constitute a reservoir of M. lentiflavum. Automated riboprinting was evaluated for its applicability in rapidly identifying environmental mycobacteria. The technique was found useful in the characterization of several species of rapidly and slowly growing environmental mycobacteria. The second aspect of this thesis refers to characterization of the degradation and tolerance power of several R. opacus, M. murale and G. polyisoprenivorans strains. R. opacus GM-14 utilizes a wide range of aromatic substrates, including benzene, 15 different halobenzenes, 18 phenols and 7 benzoates. This study revealed the high tolerance of R. opacus strains toward toxic hydrophobic compounds. R. opacus GM-14 grew in mineral medium to which benzene or monochlorobenzene was added in amounts of 13 or 3 g l-1, respectively. R. opacus GM-29 utilized toluene and benzene for growth. Strain GM-29 grew in mineral medium with 7 g l-1 of liquid toluene or benzene as the sole carbon source, corresponding to aqueous concentrations of 470 and 650 mg l-1, respectively. Most organic solvents, such as toluene and benzene, due to their high level of hydrophobicity, pass through the bacterial membrane, causing its disintegration. In this thesis the mechanisms of adaptation of rhodococci to toxic hydrophobic compounds were investigated. The rhodococcal strains increased the level of saturation of their cellular fatty acids in response to challenge with phenol, chlorophenol, benzene, chlorobenzene or toluene. The results indicated that increase in the saturation level of cellular fatty acids, particularly that in tuberculostearic acid, is part of the adaptation mechanism of strains GM-14 and GM-29 to the presence of toxic hydrophobic compounds.