595 resultados para Migrations transnationales


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the stable isotopic and carbonate stratigraphy of ODP Hole 704A to reconstruct the paleoceanographic evolution of the eastern subantarctic sector of the South Atlantic Ocean. Site 704 is well positioned with respect to latitude (46°52.8'S, 7°25.3'E) and bathymetry (2532 m) to monitor past migrations in the position of Polar Front Zone (PFZ) and changes in deep-water circulation during the late Pliocene-Pleistocene. Several important changes occurred in proxy paleoceanographic indicators across the Gauss/Matuyama boundary at 2.47 Ma: (1) accumulation rates of biogenic sedimentary components increased by an order of magnitude (Froelich et al., this volume); (2) planktonic d1 8O values increased by an average of 0.5 per mil; (3) the amplitude of the benthic d18O signal increased; (4) the accumulation rate of ice-rafted detritus increased several fold (Warnke and Allen, this volume); and (5) carbon isotopic ratios of benthic foraminifers decreased by 0.5 per mil, as did the d13C of the fine-fraction carbonate by 1.5 per mil (Mead et al., 1991, doi:10.2973/odp.proc.sr.114.152.1991), but no change occurred in planktonic foraminiferal d13C values. Most of these changes are consistent with more frequent expansions and contractions of the PFZ over Site 704 after 2.47 Ma, bringing cold, nutrient-rich waters to 47°S that stimulated both carbonate and siliceous productivity. The synchronous increase in d18O values and ice-rafted detritus accumulation in Hole 704A indicates that the 2.4 Ma paleoceanographic event included ice volume growth on both Antarctica and Northern Hemisphere continents. The decrease in benthic d13C values indicates that the ventilation rate of Southern Ocean deep water decreased and the nutrient content increased during glacial events after 2.5 Ma. At the Gauss/Matuyama boundary, benthic d13C values of the Southern Ocean shifted toward those of the Pacific end member, indicating a decrease in the relative mixing ratio of Northern Component Water and Circumpolar Deep Water. During the early Matuyama (~2.3 to 1.7 Ma), the PFZ generally occupied a southerly position with respect to Site 704 and carbonate productivity prevailed. Exceptions to these general conditions occurred during strong glacial events of the early Matuyama (e.g., isotopic stages 82, 78, 74, and 70), when the PFZ migrated to the north and opal sedimentation predominated at Site 704. At 1.7 Ma, the PFZ migrated toward the equator and occupied a more northerly position for a prolonged interval between ~1.7 and 1.5 Ma. Beginning at ~1.5-1.4 Ma, surface and bottom water parameters (d18O, d13C, %CaCO3, and %opal) in the subantarctic South Atlantic became highly correlated such that glacial events (d18O maxima) corresponded to d13C and carbonate minima and opal maxima. This pattern is typical of the correlation found during the latest Pleistocene in the Southern Ocean (Charles and Fairbanks, in press). This event coincided with increased suppression of Northern Component Water during glacial events after 1.5 Ma (Raymo et al., 1990, doi:10.1016/0012-821X(90)90051-X), which may have influenced the climatology of the Southern Hemisphere by altering the flux of heat and salt to the Southern Ocean).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humpback whales (Megaptera novaeangliae) undertake extensive seasonal migrations from summer feeding areas in high latitudes to winter mating and calving grounds in tropical waters (Clapham and Mead 1999, http://www.jstor.org/stable/3504352). In the Southern Hemisphere, seven populations are recognized by the International Whaling Commission (IWC). In this study, we report the movements of seven whales satellite-tagged in the Cook Islands, including the first documented migration to an antarctic feeding ground. In September 2006 and 2007 we attached Argos satellite-monitored tags to eight humpback whales of various sex and behavioral classes. All whales were tagged in the nearshore waters of Rarotonga (the largest island in the Cooks group).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesopelagic fish were collected using a 1 m**2 Double-MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System) and 4.5 m**2 IKMT (Isaacs-Kidd midwater trawl). The main portion of the IKMT was 20 mm knotted nylon, and the tail bag was 3 mm knotless nylon. Oblique IKMT tows were made to a maximum depth of 500 m at a tow speed of 3.5 knots. The original cruise plan intended for nighttime IKMT tows, but tow times varied due to operational constraints. The MOCNESS was equipped with 20 nets of 333 µm mesh size; 10 nets per side. The towing speed was 2 knots. Samples were collected to a maximum depth of 1250 m. The first oblique nets sampled from the surface to the max depth, and the other nets sampled depth stratified bins of the water column. MOCNESS hauls were performed during day and night to investigate diel vertical migrations. Mesoplelagic fish were processed on board. All fish were picked from all IKMT nets, most oblique MOCNESS nets, and the left side nets of the depth stratified MOCNESS samples. The Depth stratified nets from the right side of the MOCNESS frame were preserved in 5 % formalin for future quantitative analyses of the nekton. Fish were identified to the lowest possible taxa using Whitehead et al. (1984) and Fahay (2007). Standard length of each fish was measured to the nearest 0.1 mm using a digital caliper. Measured and identified fish were frozen in an -80 °C freezer, and shipped to the University of Hamburg at the end of the cruise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine-grained sediment depocenters on continental shelves are of increased scientific interest since they record environmental changes sensitively. A north-south elongated mud depocenter extends along the Senegalese coast in mid-shelf position. Shallow-acoustic profiling was carried out to determine extent, geometry and internal structures of this sedimentary body. In addition, four sediment cores were retrieved with the main aim to identify how paleoclimatic signals and coastal changes have controlled the formation of this mud depocenter. A general paleoclimatic pattern in terms of fluvial input appears to be recorded in this depositional archive. Intervals characterized by high terrigenous input, high sedimentation rates and fine grain sizes occur roughly contemporaneously in all cores and are interpreted as corresponding to intensified river discharge related to more humid conditions in the hinterland. From 2750 to 1900 and from 1000 to 700 cal a BP, wetter conditions are recorded off Senegal, an observation which is in accordance with other records from NW-Africa. Nevertheless, the three employed proxies (sedimentation rate, grain size and elemental distribution) do not always display consistent inter-core patterns. Major differences between the individual core records are attributed to sediment remobilization which was linked to local hydrographic variations as well as reorganizations of the coastal system. The Senegal mud belt is a layered inhomogeneous sedimentary body deposited on an irregular erosive surface. Early Holocene deceleration in the rate of the sea-level rise could have enabled initial mud deposition on the shelf. These favorable conditions for mud deposition occur coevally with a humid period over NW-Africa, thus, high river discharge. Sedimentation started preferentially in the northern areas of the mud belt. During mid-Holocene, a marine incursion led to the formation of an embayment. Afterwards, sedimentation in the north was interrupted in association with a remarkable southward shift in the location of the active depocenter as it is reflected by the sedimentary architecture and confirmed by radiocarbon dates. These sub-recent shifts in depocenters location are caused by migrations of the Senegal River mouth. During late Holocene times, the weakening of river discharge allowed the longshore currents to build up a chain of beach barriers which have forced the river mouth to shift southwards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages in Mesozoic and Cenozoic sediments were studied at Sites 511, 512, 513, and 514 drilled during Leg 71 in the southwestern Atlantic on the Maurice Ewing Bank and in the Argentine Basin. Benthic foraminifers in almost all stratigraphic subdivisions of Sites 511 and 512 reflect the gradual subsidence of the Falkland Plateau from shelf depths in the Barremian-Albian, when a semiclosed basin with restricted circulation of water masses and anaerobic conditions existed, to lower bathyal depths in the Late Cretaceous and Cenozoic, with an abrupt acceleration at the boundary of Lower and Upper Cretaceous. The composition, distribution, and preservation of Late Cretaceous assemblages of benthic foraminifers suggest considerable fluctuations of the foraminiferal lysocline and the CCD. This is evidenced by dissolution facies and foraminiferal assemblages in which agglutinated and resistant calcareous forms predominated during high stands of the CCD and by calcareous facies in which rich assemblages of calcareous species predominated during low stands. The highest position of the CCD on the Plateau (less than 1500-2000 m) was in the late Cenomanian, Turonian, and Coniacian. In the Santonian and Campanian the CCD was at depths below 1500-2000 meters. At the end of the Campanian the CCD shifted again to depths comparable with those of Cenomanian and Turonian time. In the latest Campanian and the Maestrichtian the CCD was low and nanno-foraminiferal oozes with a rich assemblage of benthic foraminifers accumulated. Foraminiferal assemblages at Sites 513 and 514 in the Argentine Basin also testify to oceanic subsidence from lower bathyal depths in the Oligocene to abyssal ones at present. This process was complicated by the influence of geographical migrations of the Polar Front caused by extensions of the ice sheet in the Antarctic after the opening of the Drake Passage during the Oligocene. In Mesozoic and Cenozoic deposits of the Falkland Plateau and the Argentine Basin seven assemblages of benthic foraminifers were distinguished by age: early-middle Albian, middle-late Albian, Late Cretaceous (including four groups), middle Eocene, late Eocene-early Miocene, middle-late Miocene, and Pliocene-Quaternary. The Albian assemblages contain many species common to the foraminiferal fauna of the Austral Biogeographical Province. The Late Cretaceous assemblage contains, along with Austral species, species common to foraminifers of North America, Western Europe, the Russian platform, and the south of the U.S.S.R. Deep-sea cosmopolitan species prevail in Cenozoic assemblages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Antarctic Intermediate Water (AAIW) is a key player in global-scale oceanic overturning processes and an important conduit for heat, fresh water, and carbon transport. The AAIW past variability is poorly understood mainly due to the lack of sedimentary archives at intermediate water depths. We present records of benthic stable isotopes from sediments retrieved with the seafloor drill rig MARUM-MeBo at 956 m water depth off northern Chile (GeoB15016, 27°29.48'S, 71°07.58'W) that extend back to 970 ka. The sediments at this site are presently deposited at the boundary between AAIW and Pacific Deep Water (PDW). For previous peak interglacials, our results reveal similar benthic d13C values at site GeoB15016 and of a newly generated stack of benthic d13C from various deep Pacific cores representing the "average PDW." This suggests, unlike today, the absence of AAIW at the site and the presence of nearly pure PDW. In contrast, more positive d13C values at site GeoB15016 compared to the stack imply a considerable AAIW contribution during cold phases of interglacials and especially during glacials. Besides, we used three short sediment cores to reconstruct benthic d13C values from the AAIW core during the last glacial and found a d13C signature similar to today's. Assuming that this was the case also for the past 970 kyr, we demonstrate that sea level changes and latitudinal migrations of the AAIW formation site can only account for about 50% of the full range of past d13C increases at site GeoB15016 during cold periods. Other processes that could explain the remaining of the positive d13C anomalies are increases in glacial AAIW production and/or deeper convection of the AAIW with respect to preceding interglacials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Southern Westerly Winds (SWW) exert a crucial influence over the world ocean and climate. Nevertheless, a comprehensive understanding of the Holocene temporal and spatial evolution of the SWW remains a significant challenge due to the sparsity of high-resolution marine archives and appropriate SWW proxies. Here, we present a north-south transect of high-resolution planktonic foraminiferal oxygen isotope records from the western South Atlantic. Our proxy records reveal Holocene migrations of the Brazil- Malvinas Confluence (BMC), a highly sensitive feature for changes in the position and strength of the northern portion of the SWW. Through the tight coupling of the BMC position to the large-scale wind field, the records allow a quantitative reconstruction of Holocene latitudinal displacements of the SWW across the South Atlantic. Our data reveal a gradual poleward movement of the SWW by about 1-1.5° from the early to the mid-Holocene. Afterwards variability in the SWW is dominated by millennial-scale displacements in the order of 1° in latitude with no recognizable longer-term trend. These findings are confronted with results from a state-of-the-art transient Holocene climate simulation using a comprehensive coupled atmosphere-ocean general circulation model. Proxy-inferred and modeled SWW shifts compare qualitatively, but the model underestimates both orbitally forced multi-millennial and internal millennial SWW variability by almost an order of magnitude. The underestimated natural variability implies a substantial uncertainty in model projections of future SWW shifts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertical distribution of common zooplankton species is examined on the base of two series of layer-by-layer net catches down to depth of 3400 m. Differences between the series are significant for most species only near the surface, whereas in deeper layers character of distribution remains the same. Great depths in the Sea of Japan are populated most actively by species performing intensive daily migrations, and less actively by species continuously confined to a definite depth range. Different character of nutrition of the animals apparently determines extent of utilization of deep layers, which are usual for the species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A preliminary composite depth section was generated for Site 704 by splicing Holes 704A and 704B together over the interval 0-350 mbsf (0-9 m.y.). High-resolution carbonate and opal data from the cores were correlated with the calcium and silicon signals from the GST logging run in Hole 704B to identify missing and disturbed intervals in the cores. Paleomagnetic and biostratigraphic age boundaries were then transferred to the composite depth records to obtain an age model, and sedimentation rates were calculated by linear interpolation between datums. Algorithms relating measured dry-bulk density to carbonate content and depth were generated to produce predicted values of density for every sample. Accumulation rates of bulk, carbonate, opal, and terrigenous sediment components were then computed to generate a record of sediment deposition on the Meteor Rise that has a resolution of better than 200,000 yr for the period from 8.6 to 1.0 m.y. From 8.6 to 2.5 m.y., bulk-accumulation rates on the Meteor Rise averaged less than 2 g/cm**2/1000 yr and were dominated by carbonate deposition. The first significant opal deposition (6.0 m.y.) punctuated a brief (less than 0.6 Ma) approach of the Polar Front Zone (PFZ) northward that heralded a period of increasing severity of periodic carbonate dissolution events (terrigenous maxima) that abruptly terminated at 4.8 m.y. (base of the Thvera Subchron), synchronous with the reflooding of the Mediterranean after the Messinian salinity crisis. From 4.8 to 2.5 m.y., carbonate again dominated deposition, and the PFZ was far south except during brief northward excursions bracketing 4.2-3.9, 3.3-2.9, and 2.8-2.7 m.y. At 2.5 m.y., all components of bulk-accumulation rates increased dramatically (up to 15 g/cm2/1000 yr), and by 2.4 m.y., a pattern of alternating, high-amplitude carbonate and opal cyclicity marked the initiation of rapid glacial to interglaci·l swings in the position of the PFZ, synchronous with the "onset" of major Northern Hemisphere glaciation. Both mass-accumulation rates and the amplitude of the cycles decreased by about 2 m.y., but opal accumulation rates remained high up through the base of the Jaramillo (0.98 m.y.). From 1.9 to 1 m.y., the record is characterized by moderate amplitude fluctuations in carbonate and opal. This record of opal accumulation rates is interpreted as a long-term "Polar Front Indicator" that monitors the advance and retreat of the opal-rich PFZ northward (southward) toward (away from) the Meteor Rise in the subantarctic sector of the South Atlantic Ocean. The timing of PFZ migrations in the subantarctic South Atlantic Ocean is remarkably similar to Pliocene-Pleistocene climate records deduced from benthic oxygen isotope records in the North Atlantic Ocean (Raymo et al., 1989, doi:10.1029/PA004i004p00413; Ruddiman et al., 1989, doi:10.1029/PA004i004p00353). These include northward migrations during "cold" intervals containing strong glacial isotope stages (2.4-2.3, 2.1-2.0, 1.95-1.55, 1.45-1.30 m.y. and at about 1.13 and 1.09 m.y.) and southward migrations during "warm" intervals containing weak glacial and/or strong interglacial stages (2.45-2.40, 2.30-2.10, 2.00-1.95, 1.52-1.45, 1.30-1.18, 1.11, and 1.06-0.93 m.y.). Although our preliminary composite record is not continuous (some stages are obviously missing), there is hope that future work will identify these missing intervals in the as yet incomplete Hole 704B and will extend this high-resolution Southern Hemisphere climate record back to 8.6 m.y.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesopelagic fish were collected using a 1 m**2 Double-MOCNESS (Multiple Opening and Closing Net and Environmental Sensing System) and 4.5 m**2 IKMT (Isaacs-Kidd midwater trawl). The main portion of the IKMT was 20 mm knotted nylon, and the tail bag was 3 mm knotless nylon. Oblique IKMT tows were made to a maximum depth of 500 m at a tow speed of 3.5 knots. The original cruise plan intended for nighttime IKMT tows, but tow times varied due to operational constraints. The MOCNESS was equipped with 20 nets of 333 µm mesh size; 10 nets per side. The towing speed was 2 knots. Samples were collected to a maximum depth of 1250 m. The first oblique nets sampled from the surface to the max depth, and the other nets sampled depth stratified bins of the water column. MOCNESS hauls were performed during day and night to investigate diel vertical migrations. Mesoplelagic fish were processed on board. All fish were picked from all IKMT nets, most oblique MOCNESS nets, and the left side nets of the depth stratified MOCNESS samples. The Depth stratified nets from the right side of the MOCNESS frame were preserved in 5 % formalin for future quantitative analyses of the nekton. Fish were identified to the lowest possible taxa using Whitehead et al. (1984) and Fahay (2007). Standard length of each fish was measured to the nearest 0.1 mm using a digital caliper. Measured and identified fish were frozen in an -80 °C freezer, and shipped to the University of Hamburg at the end of the cruise.

Relevância:

10.00% 10.00%

Publicador: