983 resultados para Methods: numerical


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing in resolution of numerical weather prediction models has allowed more and more realistic forecasts of atmospheric parameters. Due to the growing variability into predicted fields the traditional verification methods are not always able to describe the model ability because they are based on a grid-point-by-grid-point matching between observation and prediction. Recently, new spatial verification methods have been developed with the aim of show the benefit associated to the high resolution forecast. Nested in among of the MesoVICT international project, the initially aim of this work is to compare the newly tecniques remarking advantages and disadvantages. First of all, the MesoVICT basic examples, represented by synthetic precipitation fields, have been examined. Giving an error evaluation in terms of structure, amplitude and localization of the precipitation fields, the SAL method has been studied more thoroughly respect to the others approaches with its implementation in the core cases of the project. The verification procedure has concerned precipitation fields over central Europe: comparisons between the forecasts performed by the 00z COSMO-2 model and the VERA (Vienna Enhanced Resolution Analysis) have been done. The study of these cases has shown some weaknesses of the methodology examined; in particular has been highlighted the presence of a correlation between the optimal domain size and the extention of the precipitation systems. In order to increase ability of SAL, a subdivision of the original domain in three subdomains has been done and the method has been applied again. Some limits have been found in cases in which at least one of the two domains does not show precipitation. The overall results for the subdomains have been summarized on scatter plots. With the aim to identify systematic errors of the model the variability of the three parameters has been studied for each subdomain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vaults are an architectural element which during construction history have been built with a great variety of different materials, shapes, and sizes. The shape of these structural elements was often dependent by the necessity to cover complex spaces, by the needed loading capacity, or by architectural aesthetics. Within this complex scenario masonry patterns generates also different effects on loading capacity, load percolation and stiffness of the structure. These effects were been extensively investigated, both with empirical observations and with modern numerical methods. While most of them focus on analyzing the load bearing capacity or the texture effect on vaulted structures, the aim of this analysis is to investigate on the effects of the variation of a single structural characteristic on the load percolation in the vault. Moreover, an additional purpose of the work is related to the coding of a parametrical model aiming at generating different masonry vaulted structures. Nevertheless, proposed script can generate different typology of vaulted structure basing on some structural characteristics, such as the span and the length to cover and the dimensions of the blocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'oggetto della tesi è la modellazione numerica di pali di fondazione per turbine eoliche in ambiente offshore. Il metodo di modellazione comprende l'interpretazione di prove CPT per l'estrapolazione dei parametri geotecnici del terreno, la creazione di un modello dell'interazione tra struttura e terreno tramite il software agli elementi finiti Abaqus, la sua verifica, l'ottimizzazione dell'estensione del modello del terreno e della mesh e la simulazione numerica del comportamento di pali caricati assialmente in compressione. Grazie al confronto con i risultati di test su modelli fisici, eseguiti nel laboratorio dell'istituto Fraunhofer IWES di Hannover, di tre pali aventi la stessa geometria ma installati in punti con diverse condizioni di compattazione della sabbia, è stata possibile la messa a punto di una strategia di simulazione più accurata possibile e la sua validazione. A conclusione del lavoro è stato eseguito un esempio di design di una fondazione jacket per una turbina eolica offshore.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Besides increasing the share of electric and hybrid vehicles, in order to comply with more stringent environmental protection limitations, in the mid-term the auto industry must improve the efficiency of the internal combustion engine and the well to wheel efficiency of the employed fuel. To achieve this target, a deeper knowledge of the phenomena that influence the mixture formation and the chemical reactions involving new synthetic fuel components is mandatory, but complex and time intensive to perform purely by experimentation. Therefore, numerical simulations play an important role in this development process, but their use can be effective only if they can be considered accurate enough to capture these variations. The most relevant models necessary for the simulation of the reacting mixture formation and successive chemical reactions have been investigated in the present work, with a critical approach, in order to provide instruments to define the most suitable approaches also in the industrial context, which is limited by time constraints and budget evaluations. To overcome these limitations, new methodologies have been developed to conjugate detailed and simplified modelling techniques for the phenomena involving chemical reactions and mixture formation in non-traditional conditions (e.g. water injection, biofuels etc.). Thanks to the large use of machine learning and deep learning algorithms, several applications have been revised or implemented, with the target of reducing the computing time of some traditional tasks by orders of magnitude. Finally, a complete workflow leveraging these new models has been defined and used for evaluating the effects of different surrogate formulations of the same experimental fuel on a proof-of-concept GDI engine model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of ancient, undeciphered scripts presents unique challenges, that depend both on the nature of the problem and on the peculiarities of each writing system. In this thesis, I present two computational approaches that are tailored to two different tasks and writing systems. The first of these methods is aimed at the decipherment of the Linear A afraction signs, in order to discover their numerical values. This is achieved with a combination of constraint programming, ad-hoc metrics and paleographic considerations. The second main contribution of this thesis regards the creation of an unsupervised deep learning model which uses drawings of signs from ancient writing system to learn to distinguish different graphemes in the vector space. This system, which is based on techniques used in the field of computer vision, is adapted to the study of ancient writing systems by incorporating information about sequences in the model, mirroring what is often done in natural language processing. In order to develop this model, the Cypriot Greek Syllabary is used as a target, since this is a deciphered writing system. Finally, this unsupervised model is adapted to the undeciphered Cypro-Minoan and it is used to answer open questions about this script. In particular, by reconstructing multiple allographs that are not agreed upon by paleographers, it supports the idea that Cypro-Minoan is a single script and not a collection of three script like it was proposed in the literature. These results on two different tasks shows that computational methods can be applied to undeciphered scripts, despite the relatively low amount of available data, paving the way for further advancement in paleography using these methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In silico methods, such as musculoskeletal modelling, may aid the selection of the optimal surgical treatment for highly complex pathologies such as scoliosis. Many musculoskeletal models use a generic, simplified representation of the intervertebral joints, which are fundamental to the flexibility of the spine. Therefore, to model and simulate the spine, a suitable representation of the intervertebral joint is crucial. The aim of this PhD was to characterise specimen-specific models of the intervertebral joint for multi-body models from experimental datasets. First, the project investigated the characterisation of a specimen-specific lumped parameter model of the intervertebral joint from an experimental dataset of a four-vertebra lumbar spine segment. Specimen-specific stiffnesses were determined with an optimisation method. The sensitivity of the parameters to the joint pose was investigate. Results showed the stiffnesses and predicted motions were highly depended on both the joint pose. Following the first study, the method was reapplied to another dataset that included six complete lumbar spine segments under three different loading conditions. Specimen-specific uniform stiffnesses across joint levels and level-dependent stiffnesses were calculated by optimisation. Specimen-specific stiffness show high inter-specimen variability and were also specific to the loading condition. Level-dependent stiffnesses are necessary for accurate kinematic predictions and should be determined independently of one another. Secondly, a framework to create subject-specific musculoskeletal models of individuals with severe scoliosis was developed. This resulted in a robust codified pipeline for creating subject-specific, severely scoliotic spine models from CT data. In conclusion, this thesis showed that specimen-specific intervertebral joint stiffnesses were highly sensitive to joint pose definition and the importance of level-dependent optimisation. Further, an open-source codified pipeline to create patient-specific scoliotic spine models from CT data was released. These studies and this pipeline can facilitate the specimen-specific characterisation of the scoliotic intervertebral joint and its incorporation into scoliotic musculoskeletal spine models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scope of the thesis is to broaden the knowledge about axially loaded pipe piles, that can play as foundations for offshore wind turbines based on jacket structures. The goal of the work was pursued by interpreting experimental data on large-scale model piles and by developing numerical tools for the prediction of their monotonic response to tensile and compressive loads to failure. The availability of experimental results on large scale model piles produced in two different campaigns at Fraunhofer IWES (Hannover, Germany) represented the reference for the whole work. Data from CPTs, blow counts during installation and load-displacement curves allowed to develop considerations on the experimental results and comparison with empirical methods from literature, such as CPT-based methods and Load Transfer methods. The understanding of soil-structure interaction mechanisms has been involved in the study in order to better assess the mechanical response of the sand with the scope to help in developing predictive tools of the experiments. A lack of information on the response of Rohsand 3152 when in contact with steel was highlighted, so the necessity of better assessing its response was fulfilled with a comprehensive campaign of interface shear test. It was found how the response of the sand to ultimate conditions evolve with the roughness of the steel, which is a precious information to take account of when attempting the prediction of a pile capacity. Parallel to this topic, the work has developed a numerical modelling procedure that was validated on the available large-scale model piles at IWES. The modelling strategy is intended to build a FE model whose mechanical properties of the sand come from an interpretation of commonly available geotechnical tests. The results of the FE model were compared with other predictive tools currently used in the engineering practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research activity aims at providing a reliable estimation of particular state variables or parameters concerning the dynamics and performance optimization of a MotoGP-class motorcycle, integrating the classical model-based approach with new methodologies involving artificial intelligence. The first topic of the research focuses on the estimation of the thermal behavior of the MotoGP carbon braking system. Numerical tools are developed to assess the instantaneous surface temperature distribution in the motorcycle's front brake discs. Within this application other important brake parameters are identified using Kalman filters, such as the disc convection coefficient and the power distribution in the disc-pads contact region. Subsequently, a physical model of the brake is built to estimate the instantaneous braking torque. However, the results obtained with this approach are highly limited by the knowledge of the friction coefficient (μ) between the disc rotor and the pads. Since the value of μ is a highly nonlinear function of many variables (namely temperature, pressure and angular velocity of the disc), an analytical model for the friction coefficient estimation appears impractical to establish. To overcome this challenge, an innovative hybrid solution is implemented, combining the benefit of artificial intelligence (AI) with classical model-based approach. Indeed, the disc temperature estimated through the thermal model previously implemented is processed by a machine learning algorithm that outputs the actual value of the friction coefficient thus improving the braking torque computation performed by the physical model of the brake. Finally, the last topic of this research activity regards the development of an AI algorithm to estimate the current sideslip angle of the motorcycle's front tire. While a single-track motorcycle kinematic model and IMU accelerometer signals theoretically enable sideslip calculation, the presence of accelerometer noise leads to a significant drift over time. To address this issue, a long short-term memory (LSTM) network is implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous earthquakes showed that shear wall damage could lead to catastrophic failures of the reinforced concrete building. The lateral load capacity of shear walls needs to be estimated to minimize associated losses during catastrophic events; hence it is necessary to develop and validate reliable and stable numerical methods able to converge to reasonable estimations with minimum computational effort. The beam-column 1-D line element with fiber-type cross-section model is a practical option that yields results in agreement with experimental data. However, shortcomings of using this model to predict the local damage response may come from the fact that the model requires fine calibration of material properties to overcome regularization and size effects. To reduce the mesh-dependency of the numerical model, a regularization method based on the concept of post-yield energy is applied in this work to both the concrete and the steel material constitutive laws to predict the nonlinear cyclic response and failure mechanism of concrete shear walls. Different categories of wall specimens known to produce a different response under in plane cyclic loading for their varied geometric and detailing characteristics are considered in this study, namely: 1) scaled wall specimens designed according to the European seismic design code and 2) unique full-scale wall specimens detailed according to the U.S. design code to develop a ductile behavior under cyclic loading. To test the boundaries of application of the proposed method, two full-scale walls with a mixed shear-flexure response and different values of applied axial load are also considered. The results of this study show that the use of regularized constitutive models considerably enhances the response predictions capabilities of the model with regards to global force-drift response and failure mode. The simulations presented in this thesis demonstrate the proposed model to be a valuable tool for researchers and engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the framework of the energy transition, the acquisition of proper knowledge of fundamental aspects characterizing the use of alternative fuels is paramount as well as the development of optimized know-how and technologies. In this sense, the use of hydrogen has been indicated as a promising route for decarbonization at the end-users stage in the energy supply chain. However, the elevated reactivity and the low-density at atmospheric conditions of hydrogen pose new challenges. Among the others, the dilution of hydrogen with carbon dioxide from carbon capture and storage systems represents a possible route. However, the interactions between these species have been poorly studied so far. For these reasons, this thesis, in collaboration between the University of Bologna and Technische Universität Bergakademie of Freiberg in Saxony (Germany), investigates the laminar flame of hydrogen-based premixed gas with the dilution of carbon dioxide. An experimental system, called a heat flux burner, was adopted ad different operating conditions. The presence of the cellularity phenomenon, forming the so-called cellular flame, was observed and analysed. Theoretical and visual methods have allowed for the characterization of the investigated flames, opening new alternatives for sustainable energy production via hydrogen transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this clinical study was to determine the efficacy of Uncaria tomentosa (cat's claw) against denture stomatitis (DS). Fifty patients with DS were randomly assigned into 3 groups to receive 2% miconazole, placebo, or 2% U tomentosa gel. DS level was recorded immediately, after 1 week of treatment, and 1 week after treatment. The clinical effectiveness of each treatment was measured using Newton's criteria. Mycologic samples from palatal mucosa and prosthesis were obtained to determinate colony forming units per milliliter (CFU/mL) and fungal identification at each evaluation period. Candida species were identified with HiCrome Candida and API 20C AUX biochemical test. DS severity decreased in all groups (P < .05). A significant reduction in number of CFU/mL after 1 week (P < .05) was observed for all groups and remained after 14 days (P > .05). C albicans was the most prevalent microorganism before treatment, followed by C tropicalis, C glabrata, and C krusei, regardless of the group and time evaluated. U tomentosa gel had the same effect as 2% miconazole gel. U tomentosa gel is an effective topical adjuvant treatment for denture stomatitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negative-ion mode electrospray ionization, ESI(-), with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was coupled to a Partial Least Squares (PLS) regression and variable selection methods to estimate the total acid number (TAN) of Brazilian crude oil samples. Generally, ESI(-)-FT-ICR mass spectra present a power of resolution of ca. 500,000 and a mass accuracy less than 1 ppm, producing a data matrix containing over 5700 variables per sample. These variables correspond to heteroatom-containing species detected as deprotonated molecules, [M - H](-) ions, which are identified primarily as naphthenic acids, phenols and carbazole analog species. The TAN values for all samples ranged from 0.06 to 3.61 mg of KOH g(-1). To facilitate the spectral interpretation, three methods of variable selection were studied: variable importance in the projection (VIP), interval partial least squares (iPLS) and elimination of uninformative variables (UVE). The UVE method seems to be more appropriate for selecting important variables, reducing the dimension of the variables to 183 and producing a root mean square error of prediction of 0.32 mg of KOH g(-1). By reducing the size of the data, it was possible to relate the selected variables with their corresponding molecular formulas, thus identifying the main chemical species responsible for the TAN values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What is the contribution of the provision, at no cost for users, of long acting reversible contraceptive methods (LARC; copper intrauterine device [IUD], the levonorgestrel-releasing intrauterine system [LNG-IUS], contraceptive implants and depot-medroxyprogesterone [DMPA] injection) towards the disability-adjusted life years (DALY) averted through a Brazilian university-based clinic established over 30 years ago. Over the last 10 years of evaluation, provision of LARC methods and DMPA by the clinic are estimated to have contributed to DALY averted by between 37 and 60 maternal deaths, 315-424 child mortalities, 634-853 combined maternal morbidity and mortality and child mortality, and 1056-1412 unsafe abortions averted. LARC methods are associated with a high contraceptive effectiveness when compared with contraceptive methods which need frequent attention; perhaps because LARC methods are independent of individual or couple compliance. However, in general previous studies have evaluated contraceptive methods during clinical studies over a short period of time, or not more than 10 years. Furthermore, information regarding the estimation of the DALY averted is scarce. We reviewed 50 004 medical charts from women who consulted for the first time looking for a contraceptive method over the period from 2 January 1980 through 31 December 2012. Women who consulted at the Department of Obstetrics and Gynaecology, University of Campinas, Brazil were new users and users switching contraceptive, including the copper IUD (n = 13 826), the LNG-IUS (n = 1525), implants (n = 277) and DMPA (n = 9387). Estimation of the DALY averted included maternal morbidity and mortality, child mortality and unsafe abortions averted. We obtained 29 416 contraceptive segments of use including 25 009 contraceptive segments of use from 20 821 new users or switchers to any LARC method or DMPA with at least 1 year of follow-up. The mean (± SD) age of the women at first consultation ranged from 25.3 ± 5.7 (range 12-47) years in the 1980s, to 31.9 ± 7.4 (range 16-50) years in 2010-2011. The most common contraceptive chosen at the first consultation was copper IUD (48.3, 74.5 and 64.7% in the 1980s, 1990s and 2000s, respectively). For an evaluation over 20 years, the cumulative pregnancy rates (SEM) were 0.4 (0.2), 2.8 (2.1), 4.0 (0.4) and 1.3 (0.4) for the LNG-IUS, the implants, copper IUD and DMPA, respectively and cumulative continuation rates (SEM) were 15.1 (3.7), 3.9 (1.4), 14.1 (0.6) and 7.3 (1.7) for the LNG-IUS, implants, copper IUD and DMPA, respectively (P < 0.001). Over the last 10 years of evaluation, the estimation of the contribution of the clinic through the provision of LARC methods and DMPA to DALY averted was 37-60 maternal deaths; between 315 and 424 child mortalities; combined maternal morbidity and mortality and child mortality of between 634 and 853, and 1056-1412 unsafe abortions averted. The main limitations are the number of women who never returned to the clinic (overall 14% among the four methods under evaluation); consequently the pregnancy rate could be different. Other limitations include the analysis of two kinds of copper IUD and two kinds of contraceptive implants as the same IUD or implant, and the low number of users of implants. In addition, the DALY calculation relies on a number of estimates, which may vary in different parts of the world. LARC methods and DMPA are highly effective and women who were well-counselled used these methods for a long time. The benefit of averting maternal morbidity and mortality, child mortality, and unsafe abortions is an example to health policy makers to implement more family planning programmes and to offer contraceptive methods, mainly LARC and DMPA, at no cost or at affordable cost for the underprivileged population. This study received partial financial support from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant # 2012/12810-4 and from the National Research Council (CNPq), grant #573747/2008-3. B.F.B., M.P.G., and V.M.C. were fellows from the scientific initiation programme from FAPESP. Since the year 2001, all the TCu380A IUD were donated by Injeflex, São Paulo, Brazil, and from the year 2006 all the LNG-IUS were donated by the International Contraceptive Access Foundation (ICA), Turku, Finland. Both donations are as unrestricted grants. The authors declare that there are no conflicts of interest associated with this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microabrasion technique of enamel consists of selectively abrading the discolored areas or causing superficial structural changes in a selective way. In microabrasion technique, abrasive products associated with acids are used, and the evaluation of enamel roughness after this treatment, as well as surface polishing, is necessary. This in-vitro study evaluated the enamel roughness after microabrasion, followed by different polishing techniques. Roughness analyses were performed before microabrasion (L1), after microabrasion (L2), and after polishing (L3).Thus, 60 bovine incisive teeth divided into two groups were selected (n=30): G1- 37% phosphoric acid (37%) (Dentsply) and pumice; G2- hydrochloric acid (6.6%) associated with silicon carbide (Opalustre - Ultradent). Thereafter, the groups were divided into three sub-groups (n=10), according to the system of polishing: A - Fine and superfine granulation aluminum oxide discs (SofLex 3M); B - Diamond Paste (FGM) associated with felt discs (FGM); C - Silicone tips (Enhance - Dentsply). A PROC MIXED procedure was applied after data exploratory analysis, as well as the Tukey-Kramer test (5%). No statistical differences were found between G1 and G2 groups. L2 differed statistically from L1 and showed superior amounts of roughness. Differences in the amounts of post-polishing roughness for specific groups (1A, 2B, and 1C) arose, which demonstrated less roughness in L3 and differed statistically from L2 in the polishing system. All products increased enamel roughness, and the effectiveness of the polishing systems was dependent upon the abrasive used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin has been widely explored for many biomedical applications, due to its biocompatibility and biodegradability. Sterilization is a fundamental step in biomaterials processing and it must not jeopardize the functionality of medical devices. The aim of this study was to analyze the influence of different sterilization methods in the physical, chemical, and biological characteristics of dense and porous silk fibroin membranes. Silk fibroin membranes were treated by several procedures: immersion in 70% ethanol solution, ultraviolet radiation, autoclave, ethylene oxide, and gamma radiation, and were analyzed by scanning electron microscopy, Fourier-transformed infrared spectroscopy (FTIR), X-ray diffraction, tensile strength and in vitro cytotoxicity to Chinese hamster ovary cells. The results indicated that the sterilization methods did not cause perceivable morphological changes in the membranes and the membranes were not toxic to cells. The sterilization methods that used organic solvent or an increased humidity and/or temperature (70% ethanol, autoclave, and ethylene oxide) increased the silk II content in the membranes: the dense membranes became more brittle, while the porous membranes showed increased strength at break. Membranes that underwent sterilization by UV and gamma radiation presented properties similar to the nonsterilized membranes, mainly for tensile strength and FTIR results.