644 resultados para Mecanica da fatura
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
This review is intended to gather together recent studies that explore the effects of different types of noninvasive ventilation (NIV) on the autonomic nervous system, assessed through heart rate variability (HRV). A search for papers was conducted in the PubMed, PEDro, SciELO and Lilacs databases with the following descriptors: noninvasive ventilation, CPAP ventilation, intermittent positive pressure breathing and autonomic nervous system, for the period between 2008 and 2012. After eliminating papers not addressing the topic, we selected six studies, of which five applied NIV in CPAP mode and one used biphasic positive airway pressure. In general, the findings suggest that NIV promotes changes in autonomic modulation that are dependent on the conditions of the subjects analyzed and the time when these rates are assessed, meaning acute or long-term effects.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Materiais estruturais utilizados no projeto de equipamentos e instalações industriais podem apresentar mudança de seu comportamento à fratura quando se varia a temperatura. Este tipo de comportamento caracteriza-se pela existência de uma curva de transição, onde 3 regiões ficam bem definidas: os patamares inferior e superior e a região de transição. Na região de transição, os resultados experimentais apresentam alto espalhamento e são bastante dependentes da geometria ensaiada. Para solucionar este problema, foi desenvolvido um modelo analítico experimental, que resultou na edição da norma ASTM E1921-97. O trabalho inclui um estudo da influência de diversas rotas de tratamentos térmicos aplicadas em um aço 4130 utilizado pela indústria aeronáutica, um aço de qualidade API utilizado pela indústria petrolífera e um aço da classe A516 atualmente utilizado pela indústria nacional de vasos de pressão, na microestrutura, propriedades mecânicas de tração e tenacidade à fratura. Os resultados mostraram que o aço 4130 A450, apresentou a melhor correlação entre resistência e tenacidade entre as microestruturas pesquisadas. Este comportamento deve estar associado a rota de tratamento térmico aplicada a esta condição. O tratamento de austêmpera possibilita a formação de bainita que, tradicionalmente é conhecida por apresentar elevados valores de tenacidade. O método proposto pela ASTM pode ser considerado viável para as diversas microestruturas pesquisadas ampliando a aplicação da metodologia que recomenda o ensaio apenas para aços ferríticos. No entanto, a metodologia da Curva Mestra em materiais tratados termicamente deve ser conduzida de forma a se estabelecer parâmetros que considerem as modificações microestruturais sofridas pelo material.
Resumo:
In this paper, natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical modal and complex analysis. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. The classical modal analysis, usually applied to stationary structures, does not consider an important characteristic of rotating machinery which are the methods of forward and backward whirl. Initially, through the traditional modal analysis, axial and torsional natural frequencies were obtained in a static shaft, since they do not suffer the influence of gyroscopic effects. Later research was performed by complex modal analysis. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using MATLAB (TM) and numerical simulations were performed to validate this model. Natural frequencies and directional frequency forced response (dFRF) were obtained using the complex modal analysis for a simple vertical rotor and also for a typical drill string used in the construction of oil wells.
Resumo:
One of the main reasons for the failure in dental implant treatments is the overload, which can cause bone resorption and later, the osseointegration loss in the implant. Therefore, the aim of this study was to analyze the tension generated around dental implants in the rehabilitation of three mandible posterior teeth, varying the connection type, the disposal, and the quantity of implants. The photoelasticity method was used in order to accomplish it. Through photoelasticity, the quantity and localization of the tensions around the implants in the different studied groups were compared (three straight line implants, three offset placement implants, two implants with a mesial cantilever, and two implants with a pontic). The results showed that the tension quantity and disposition around the dental implants of the connection external hexagon and internal hexagon were similar in all groups. In the group where the cantilever was used, an increase of the tension around the implant, adjacent to the cantilever, was observed. From the results it is concluded that the type of connection used in this study did not influence the tension quantity and distribution around the implants; however, the prosthetic configuration with the cantilever use, led to an increase of the tension around the implant, adjacent to the cantilever.
Resumo:
In the present work is proposed the experimental study of hydrodynamic behaviour of membrane neurological valve, applied in treatment of hydrocephalus, a pathophisiology that affects both adults and children, caused due to the excess of cerebrospinal fluid in brain ventricles.
Resumo:
The present work aims to study the microstructure and mechanical properties of titanium alloys, widely used in the manufacture of orthopedic implants in order to compare a new manufacturing technology of implants, rapid prototyping in metals with conventional manufacturing processes. Rapid prototyping is being used in many areas of human knowledge to assist in the study and often in the manufacture of components for their own use. Nowadays with the advancement of software and equipment such as computed tomography and magnetic resonance imaging, we can reproduce any part of the human body in three-dimensional images with great perfection and it is used in the reproduction of implants, scaffolds, material aid and preparation in surgery. This work aims to do: A comparison between the microstructure of the alloy in the two manufacturing processes (prototyping and conventional), showing the grain size, the nature, form, quantity, and distribution of various ingredients or certain inclusions and study of mechanical properties of titanium in both cases.
Resumo:
This project was originated from the national aircraft industry requirements to reduce the use of coated materials with electroplated chromium or cadmium that produce waste, which is harmful to health or the environment. The selected material is a Custom 465 stainless steel used in the aeronautical field due to its high mechanical strength. Considering the load sustained by the wheel axis of the landing gear, the Custom 465 was tested in axial fatigue. The objective is to compare the behavior of the Custom 465 stainless steel with plated AISI 4340 steel coated with cadmium. Fractographic analysis was conducted using scanning electron microscopy. X-ray diffraction method was used to determine the residual stress field induced by shot peening.
Resumo:
Vortex shedding phenomenon produced by a square cylinder placed close to a smooth flat plate is experimentally studied by means of flow visualization techniques and hot-film anemometry. Qualitative and quantitative information about the flow field has been obtained for Reynolds numbers up to 1,000. Vortex shedding images in several Reynolds number have been captured and the non dimensional vortex shedding frequency has been obtained as a function of the Reynolds number.
Resumo:
Não disponível
Resumo:
The test system connection segmental blocks and geogrids at the Department of Civil Engineering, UNESP - Guaratinguetá order to verify the strength of the connection system when subjected to different confining stresses. The present work aims to demonstrate the procedures for carrying out the test as well as the placement of concrete blocks. Were analyzed two ways of placing the blocks in the press. An entire block and two halves in the first layer, named position 12, compared to a different format, two entire blocks in the first layer, named position 21; also geogrids: single and double layer. From the data obtained for the peak strength of 20 tests it was possible to obtain the envelopes break in the connection for single and double layer. In 2011, the size of the concrete block used in the test was lower when compared with previous years. What resulted in significant decreases in the loss of connection in single layer and it was noted that there was no decrease in the strength of connection in the double-layer tests, despite the smaller area of contact between the block and geogrid. It is concluded that, through the analysis of geogrids after running the test, the concrete block is responsible for theforce that allows the movement of the geogrid due to the force from the ground
Resumo:
Thin walled cylindrical shells are widely used in many areas of industry, including civil, mechanical, nuclear, marine, petroleum and aerospace engineering. The wide application of thin cylindrical shells and the importance of instability phenomenon are the motivation basis to this study, since these factors have a great importance in engineering projects. It is presented a detailed study about the instability of cylindrical shells based on theoretical calculation, which results are compared with finite elements method calculation. The loading and boundary conditions analyzed are based on the most common types verified in real engineering projects and refer respectively to lateral (external) pressure and cylinders with simply supported edges. The calculation based on the finite elements method was executed with ANSYS 13.0 software. The results obtained with this calculation are in good agreement with the analytical theory presented in the technical note NACA No 1341 (BATDORF, 1947) considering a wide range of applicability. On the other hand, the analytical method presented in the book Theory of Elastic Stability (TIMOSHENKO; GERE, 1936) has a very restrict applicability and has presented considerable deviations in a great sort of the analyzed cases