928 resultados para Maximum likelihood channel estimation algorithms
Resumo:
The paper develops a novel realized matrix-exponential stochastic volatility model of multivariate returns and realized covariances that incorporates asymmetry and long memory (hereafter the RMESV-ALM model). The matrix exponential transformation guarantees the positivedefiniteness of the dynamic covariance matrix. The contribution of the paper ties in with Robert Basmann’s seminal work in terms of the estimation of highly non-linear model specifications (“Causality tests and observationally equivalent representations of econometric models”, Journal of Econometrics, 1988, 39(1-2), 69–104), especially for developing tests for leverage and spillover effects in the covariance dynamics. Efficient importance sampling is used to maximize the likelihood function of RMESV-ALM, and the finite sample properties of the quasi-maximum likelihood estimator of the parameters are analysed. Using high frequency data for three US financial assets, the new model is estimated and evaluated. The forecasting performance of the new model is compared with a novel dynamic realized matrix-exponential conditional covariance model. The volatility and co-volatility spillovers are examined via the news impact curves and the impulse response functions from returns to volatility and co-volatility.
Resumo:
My dissertation has three chapters which develop and apply microeconometric tech- niques to empirically relevant problems. All the chapters examines the robustness issues (e.g., measurement error and model misspecification) in the econometric anal- ysis. The first chapter studies the identifying power of an instrumental variable in the nonparametric heterogeneous treatment effect framework when a binary treat- ment variable is mismeasured and endogenous. I characterize the sharp identified set for the local average treatment effect under the following two assumptions: (1) the exclusion restriction of an instrument and (2) deterministic monotonicity of the true treatment variable in the instrument. The identification strategy allows for general measurement error. Notably, (i) the measurement error is nonclassical, (ii) it can be endogenous, and (iii) no assumptions are imposed on the marginal distribution of the measurement error, so that I do not need to assume the accuracy of the measure- ment. Based on the partial identification result, I provide a consistent confidence interval for the local average treatment effect with uniformly valid size control. I also show that the identification strategy can incorporate repeated measurements to narrow the identified set, even if the repeated measurements themselves are endoge- nous. Using the the National Longitudinal Study of the High School Class of 1972, I demonstrate that my new methodology can produce nontrivial bounds for the return to college attendance when attendance is mismeasured and endogenous.
The second chapter, which is a part of a coauthored project with Federico Bugni, considers the problem of inference in dynamic discrete choice problems when the structural model is locally misspecified. We consider two popular classes of estimators for dynamic discrete choice models: K-step maximum likelihood estimators (K-ML) and K-step minimum distance estimators (K-MD), where K denotes the number of policy iterations employed in the estimation problem. These estimator classes include popular estimators such as Rust (1987)’s nested fixed point estimator, Hotz and Miller (1993)’s conditional choice probability estimator, Aguirregabiria and Mira (2002)’s nested algorithm estimator, and Pesendorfer and Schmidt-Dengler (2008)’s least squares estimator. We derive and compare the asymptotic distributions of K- ML and K-MD estimators when the model is arbitrarily locally misspecified and we obtain three main results. In the absence of misspecification, Aguirregabiria and Mira (2002) show that all K-ML estimators are asymptotically equivalent regardless of the choice of K. Our first result shows that this finding extends to a locally misspecified model, regardless of the degree of local misspecification. As a second result, we show that an analogous result holds for all K-MD estimators, i.e., all K- MD estimator are asymptotically equivalent regardless of the choice of K. Our third and final result is to compare K-MD and K-ML estimators in terms of asymptotic mean squared error. Under local misspecification, the optimally weighted K-MD estimator depends on the unknown asymptotic bias and is no longer feasible. In turn, feasible K-MD estimators could have an asymptotic mean squared error that is higher or lower than that of the K-ML estimators. To demonstrate the relevance of our asymptotic analysis, we illustrate our findings using in a simulation exercise based on a misspecified version of Rust (1987) bus engine problem.
The last chapter investigates the causal effect of the Omnibus Budget Reconcil- iation Act of 1993, which caused the biggest change to the EITC in its history, on unemployment and labor force participation among single mothers. Unemployment and labor force participation are difficult to define for a few reasons, for example, be- cause of marginally attached workers. Instead of searching for the unique definition for each of these two concepts, this chapter bounds unemployment and labor force participation by observable variables and, as a result, considers various competing definitions of these two concepts simultaneously. This bounding strategy leads to partial identification of the treatment effect. The inference results depend on the construction of the bounds, but they imply positive effect on labor force participa- tion and negligible effect on unemployment. The results imply that the difference- in-difference result based on the BLS definition of unemployment can be misleading
due to misclassification of unemployment.
Resumo:
ABSTRACT. – Phylogenies and molecular clocks of the diatoms have largely been inferred from SSU rDNA sequences. A new phylogeny of diatoms was estimated using four gene markers SSU and LSU rDNA rbcL and psbA (total 4352 bp) with 42 diatom species. The four gene trees analysed with a maximum likelihood (ML) and Baysian (BI) analysis recovered a monophyletic origin of the new diatom classes with high bootstrap support, which has been controversial with single gene markers using single outgroups and alignments that do not take secondary structure of the SSU gene into account. The divergence time of the classes were calculated from a ML tree in the MultliDiv Time program using a Bayesian estimation allowing for simultaneous constraints from the fossil record and varying rates of molecular evolution of different branches in the phylogenetic tree. These divergence times are generally in agreement with those proposed by other clocks using single genes with the exception that the pennates appear much earlier and suggest a longer Cretaceous fossil record that has yet to be sampled. Ghost lineages (i.e. the discrepancy between first appearance (FA) and molecular clock age of origin from an extant taxon) were revealed in the pennate lineage, whereas those ghost lineages in the centric lineages previously reported by others are reviewed and referred to earlier literature.
Resumo:
ABSTRACT. – Phylogenies and molecular clocks of the diatoms have largely been inferred from SSU rDNA sequences. A new phylogeny of diatoms was estimated using four gene markers SSU and LSU rDNA rbcL and psbA (total 4352 bp) with 42 diatom species. The four gene trees analysed with a maximum likelihood (ML) and Baysian (BI) analysis recovered a monophyletic origin of the new diatom classes with high bootstrap support, which has been controversial with single gene markers using single outgroups and alignments that do not take secondary structure of the SSU gene into account. The divergence time of the classes were calculated from a ML tree in the MultliDiv Time program using a Bayesian estimation allowing for simultaneous constraints from the fossil record and varying rates of molecular evolution of different branches in the phylogenetic tree. These divergence times are generally in agreement with those proposed by other clocks using single genes with the exception that the pennates appear much earlier and suggest a longer Cretaceous fossil record that has yet to be sampled. Ghost lineages (i.e. the discrepancy between first appearance (FA) and molecular clock age of origin from an extant taxon) were revealed in the pennate lineage, whereas those ghost lineages in the centric lineages previously reported by others are reviewed and referred to earlier literature.
Resumo:
In this paper, we consider the uplink of a single-cell massive multiple-input multiple-output (MIMO) system with inphase and quadrature-phase imbalance (IQI). This scenario is of particular importance in massive MIMO systems, where the deployment of lower-cost, lower-quality components is desirable to make massive MIMO a viable technology. Particularly, we investigate the effect of IQI on the performance of massive MIMO employing maximum-ratio combining (MRC) receivers. In order to study how IQI affects channel estimation, we derive a new channel estimator for the IQI-impaired model and show that IQI can substantially downgrade the performance of MRC receivers. Moreover, a low-complexity IQI compensation scheme, suitable for massive MIMO, is proposed which is based on the IQI coefficients' estimation and it is independent of the channel gain. The performance of the proposed compensation scheme is analytically evaluated by deriving a tractable approximation of the ergodic achievable rate and providing the asymptotic power scaling laws assuming transmission over Rayleigh fading channels with log-normal large-scale fading. Finally, we show that massive MIMO effectively suppresses the residual IQI effects, as long as, the compensation scheme is applied.
Resumo:
Understanding the population structure and patterns of gene flow within species is of fundamental importance to the study of evolution. In the fields of population and evolutionary genetics, measures of genetic differentiation are commonly used to gather this information. One potential caveat is that these measures assume gene flow to be symmetric. However, asymmetric gene flow is common in nature, especially in systems driven by physical processes such as wind or water currents. As information about levels of asymmetric gene flow among populations is essential for the correct interpretation of the distribution of contemporary genetic diversity within species, this should not be overlooked. To obtain information on asymmetric migration patterns from genetic data, complex models based on maximum-likelihood or Bayesian approaches generally need to be employed, often at great computational cost. Here, a new simpler and more efficient approach for understanding gene flow patterns is presented. This approach allows the estimation of directional components of genetic divergence between pairs of populations at low computational effort, using any of the classical or modern measures of genetic differentiation. These directional measures of genetic differentiation can further be used to calculate directional relative migration and to detect asymmetries in gene flow patterns. This can be done in a user-friendly web application called divMigrate-online introduced in this study. Using simulated data sets with known gene flow regimes, we demonstrate that the method is capable of resolving complex migration patterns under a range of study designs.
Resumo:
An RVE–based stochastic numerical model is used to calculate the permeability of randomly generated porous media at different values of the fiber volume fraction for the case of transverse flow in a unidirectional ply. Analysis of the numerical results shows that the permeability is not normally distributed. With the aim of proposing a new understanding on this particular topic, permeability data are fitted using both a mixture model and a unimodal distribution. Our findings suggest that permeability can be fitted well using a mixture model based on the lognormal and power law distributions. In case of a unimodal distribution, it is found, using the maximum-likelihood estimation method (MLE), that the generalized extreme value (GEV) distribution represents the best fit. Finally, an expression of the permeability as a function of the fiber volume fraction based on the GEV distribution is discussed in light of the previous results.
Testing the psychometric properties of Kidscreen-27 with Irish children of low socio-economic status
Resumo:
Background
Kidscreen-27 was developed as part of a cross-cultural European Union-funded project to standardise the measurement of children’s health-related quality of life. Yet, research has reported mixed evidence for the hypothesised 5-factor model, and no confirmatory factor analysis (CFA) has been conducted on the instrument with children of low socio-economic status (SES) across Ireland (Northern and Republic).
Method
The data for this study were collected as part of a clustered randomised controlled trial. A total of 663 (347 male, 315 female) 8–9-year-old children (M = 8.74, SD = .50) of low SES took part. A 5- and modified 7-factor CFA models were specified using the maximum likelihood estimation. A nested Chi-square difference test was conducted to compare the fit of the models. Internal consistency and floor and ceiling effects were also examined.
Results
CFA found that the hypothesised 5-factor model was an unacceptable fit. However, the modified 7-factor model was supported. A nested Chi-square difference test confirmed that the fit of the 7-factor model was significantly better than that of the 5-factor model. Internal consistency was unacceptable for just one scale. Ceiling effects were present in all but one of the factors.
Conclusions
Future research should apply the 7-factor model with children of low socio-economic status. Such efforts would help monitor the health status of the population.
Resumo:
The impacts of climate change are considered to be strong in countries located in tropical Africa that depend on agriculture for their food, income and livelihood. Therefore, a better understanding of the local dimensions of adaptation strategies is essential to develop appropriate measures that will mitigate adverse consequences. Hence, this study was conducted to identify the most commonly used adaptation strategies that farm households practice among a set of options to withstand the effects of climate change and to identify factors that affect the choice of climate change adaptation strategies in the Central Rift Valley of Ethiopia. To address this objective, Multivariate Probit model was used. The results of the model indicated that the likelihood of households to adapt improved varieties of crops, adjust planting date, crop diversification and soil conservation practices were 58.73%, 57.72%, 35.61% and 41.15%, respectively. The Simulated Maximum Likelihood estimation of the Multivariate Probit model results suggested that there was positive and significant interdependence between household decisions to adapt crop diversification and using improved varieties of crops; and between adjusting planting date and using improved varieties of crops. The results also showed that there was a negative and significant relationship between household decisions to adapt crop diversification and soil conservation practices. The paper also recommended household, socioeconomic, institutional and plot characteristics that facilitate and impede the probability of choosing those adaptation strategies.
Resumo:
No estudo de séries temporais, os processos estocásticos usuais assumem que as distribuições marginais são contínuas e, em geral, não são adequados para modelar séries de contagem, pois as suas características não lineares colocam alguns problemas estatísticos, principalmente na estimação dos parâmetros. Assim, investigou-se metodologias apropriadas de análise e modelação de séries com distribuições marginais discretas. Neste contexto, Al-Osh and Alzaid (1987) e McKenzie (1988) introduziram na literatura a classe dos modelos autorregressivos com valores inteiros não negativos, os processos INAR. Estes modelos têm sido frequentemente tratados em artigos científicos ao longo das últimas décadas, pois a sua importância nas aplicações em diversas áreas do conhecimento tem despertado um grande interesse no seu estudo. Neste trabalho, após uma breve revisão sobre séries temporais e os métodos clássicos para a sua análise, apresentamos os modelos autorregressivos de valores inteiros não negativos de primeira ordem INAR (1) e a sua extensão para uma ordem p, as suas propriedades e alguns métodos de estimação dos parâmetros nomeadamente, o método de Yule-Walker, o método de Mínimos Quadrados Condicionais (MQC), o método de Máxima Verosimilhança Condicional (MVC) e o método de Quase Máxima Verosimilhança (QMV). Apresentamos também um critério automático de seleção de ordem para modelos INAR, baseado no Critério de Informação de Akaike Corrigido, AICC, um dos critérios usados para determinar a ordem em modelos autorregressivos, AR. Finalmente, apresenta-se uma aplicação da metodologia dos modelos INAR em dados reais de contagem relativos aos setores dos transportes marítimos e atividades de seguros de Cabo Verde.
Resumo:
This work represents an original contribution to the methodology for ecosystem models' development as well as the rst attempt of an end-to-end (E2E) model of the Northern Humboldt Current Ecosystem (NHCE). The main purpose of the developed model is to build a tool for ecosystem-based management and decision making, reason why the credibility of the model is essential, and this can be assessed through confrontation to data. Additionally, the NHCE exhibits a high climatic and oceanographic variability at several scales, the major source of interannual variability being the interruption of the upwelling seasonality by the El Niño Southern Oscillation, which has direct e ects on larval survival and sh recruitment success. Fishing activity can also be highly variable, depending on the abundance and accessibility of the main shery resources. This context brings the two main methodological questions addressed in this thesis, through the development of an end-to-end model coupling the high trophic level model OSMOSE to the hydrodynamics and biogeochemical model ROMS-PISCES: i) how to calibrate ecosystem models using time series data and ii) how to incorporate the impact of the interannual variability of the environment and shing. First, this thesis highlights some issues related to the confrontation of complex ecosystem models to data and proposes a methodology for a sequential multi-phases calibration of ecosystem models. We propose two criteria to classify the parameters of a model: the model dependency and the time variability of the parameters. Then, these criteria along with the availability of approximate initial estimates are used as decision rules to determine which parameters need to be estimated, and their precedence order in the sequential calibration process. Additionally, a new Evolutionary Algorithm designed for the calibration of stochastic models (e.g Individual Based Model) and optimized for maximum likelihood estimation has been developed and applied to the calibration of the OSMOSE model to time series data. The environmental variability is explicit in the model: the ROMS-PISCES model forces the OSMOSE model and drives potential bottom-up e ects up the foodweb through plankton and sh trophic interactions, as well as through changes in the spatial distribution of sh. The latter e ect was taken into account using presence/ absence species distribution models which are traditionally assessed through a confusion matrix and the statistical metrics associated to it. However, when considering the prediction of the habitat against time, the variability in the spatial distribution of the habitat can be summarized and validated using the emerging patterns from the shape of the spatial distributions. We modeled the potential habitat of the main species of the Humboldt Current Ecosystem using several sources of information ( sheries, scienti c surveys and satellite monitoring of vessels) jointly with environmental data from remote sensing and in situ observations, from 1992 to 2008. The potential habitat was predicted over the study period with monthly resolution, and the model was validated using quantitative and qualitative information of the system using a pattern oriented approach. The nal ROMS-PISCES-OSMOSE E2E ecosystem model for the NHCE was calibrated using our evolutionary algorithm and a likelihood approach to t monthly time series data of landings, abundance indices and catch at length distributions from 1992 to 2008. To conclude, some potential applications of the model for shery management are presented and their limitations and perspectives discussed.
Resumo:
Cette thèse porte sur l’effet du risque de prix sur la décision des agriculteurs et les transformateurs québécois. Elle se divise en trois chapitres. Le premier chapitre revient sur la littérature. Le deuxième chapitre examine l’effet du risque de prix sur la production de trois produits, à savoir le maïs grain, la viande de porc et la viande d’agneau dans la province Québec. Le dernier chapitre est centré sur l’analyse de changement des préférences du transformateur québécois de porc pour ce qui est du choix de marché. Le premier chapitre vise à montrer l’importance de l’effet du risque du prix sur la quantité produite par les agriculteurs, tel que mis en évidence par la littérature. En effet, la littérature révèle l’importance du risque de prix à l’exportation sur le commerce international. Le deuxième chapitre est consacré à l’étude des facteurs du risque (les anticipations des prix et la volatilité des prix) dans la fonction de l’offre. Un modèle d’hétéroscédasticité conditionnelle autorégressive généralisée (GARCH) est utilisé afin de modéliser ces facteurs du risque. Les paramètres du modèle sont estimés par la méthode de l’Information Complète Maximum Vraisemblance (FIML). Les résultats empiriques montrent l’effet négatif de la volatilité du prix sur la production alors que la prévisibilité des prix a un effet positif sur la quantité produite. Comme attendu, nous constatons que l’application du programme d’assurance-stabilisation des revenus agricoles (ASRA) au Québec induit une plus importante sensibilité de l’offre par rapport au prix effectif (le prix incluant la compensation de l’ASRA) que par rapport au prix du marché. Par ailleurs, l’offre est moins sensible au prix des intrants qu’au prix de l’output. La diminution de l’aversion au risque de producteur est une autre conséquence de l’application de ce programme. En outre, l’estimation de la prime marginale relative au risque révèle que le producteur du maïs est le producteur le moins averse au risque (comparativement à celui de porc ou d’agneau). Le troisième chapitre consiste en l’analyse du changement de préférence du transformateur québécois du porc pour ce qui est du choix de marché. Nous supposons que le transformateur a la possibilité de fournir les produits sur deux marchés : étranger et local. Le modèle théorique explique l’offre relative comme étant une fonction à la fois d’anticipation relative et de volatilité relative des prix. Ainsi, ce modèle révèle que la sensibilité de l’offre relative par rapport à la volatilité relative de prix dépend de deux facteurs : d’une part, la part de l’exportation dans la production totale et d’autre part, l’élasticité de substitution entre les deux marchés. Un modèle à correction d’erreurs est utilisé lors d’estimation des paramètres du modèle. Les résultats montrent l’effet positif et significatif de l’anticipation relative du prix sur l’offre relative à court terme. Ces résultats montrent donc qu’une hausse de la volatilité du prix sur le marché étranger par rapport à celle sur le marché local entraine une baisse de l’offre relative sur le marché étranger à long terme. De plus, selon les résultats, les marchés étranger et local sont plus substituables à long terme qu’à court terme.
Resumo:
This paper introduces a new stochastic clustering methodology devised for the analysis of categorized or sorted data. The methodology reveals consumers' common category knowledge as well as individual differences in using this knowledge for classifying brands in a designated product class. A small study involving the categorization of 28 brands of U.S. automobiles is presented where the results of the proposed methodology are compared with those obtained from KMEANS clustering. Finally, directions for future research are discussed.
Resumo:
The protein lysate array is an emerging technology for quantifying the protein concentration ratios in multiple biological samples. It is gaining popularity, and has the potential to answer questions about post-translational modifications and protein pathway relationships. Statistical inference for a parametric quantification procedure has been inadequately addressed in the literature, mainly due to two challenges: the increasing dimension of the parameter space and the need to account for dependence in the data. Each chapter of this thesis addresses one of these issues. In Chapter 1, an introduction to the protein lysate array quantification is presented, followed by the motivations and goals for this thesis work. In Chapter 2, we develop a multi-step procedure for the Sigmoidal models, ensuring consistent estimation of the concentration level with full asymptotic efficiency. The results obtained in this chapter justify inferential procedures based on large-sample approximations. Simulation studies and real data analysis are used to illustrate the performance of the proposed method in finite-samples. The multi-step procedure is simpler in both theory and computation than the single-step least squares method that has been used in current practice. In Chapter 3, we introduce a new model to account for the dependence structure of the errors by a nonlinear mixed effects model. We consider a method to approximate the maximum likelihood estimator of all the parameters. Using the simulation studies on various error structures, we show that for data with non-i.i.d. errors the proposed method leads to more accurate estimates and better confidence intervals than the existing single-step least squares method.