962 resultados para Maximum entropy method
Resumo:
We present an image quality assessment and enhancement method for high-resolution Fourier-Domain OCT imaging like in sub-threshold retina therapy. A Maximum-Likelihood deconvolution algorithm as well as a histogram-based quality assessment method are evaluated.
Resumo:
OBJECTIVE To assess the reliability of the cervical vertebrae maturation method (CVM). BACKGROUND Skeletal maturity estimation can influence the manner and time of orthodontic treatment. The CVM method evaluates skeletal growth on the basis of the changes in the morphology of cervical vertebrae C2, C3, C4 during growth. These vertebrae are visible on a lateral cephalogram, so the method does not require an additional radiograph. METHODS In this website based study, 10 orthodontists with a long clinical practice (3 routinely using the method - "Routine user - RU" and 7 with less experience in the CVM method - "Non-Routine user - nonRU") rated twice cervical vertebrae maturation with the CVM method on 50 cropped scans of lateral cephalograms of children in circumpubertal age (for boys: 11.5 to 15.5 years; for girls: 10 to 14 years). Kappa statistics (with lower limits of 95% confidence intervals (CI)) and proportion of complete agreement on staging was used to evaluate intra- and inter-assessor agreement. RESULTS The mean weighted kappa for intra-assessor agreement was 0.44 (range: 0.30-0.64; range of lower limits of 95% CI: 0.12-0.48) and for inter-assessor agreement was 0.28 (range: -0.01-0.58; range of lower limits of 95% CI: -0.14-0.42). The mean proportion of identical scores assigned by the same assessor was 55.2 %(range: 44-74 %) and for different pairs of assessors was 42 % (range: 16-68 %). CONCLUSIONS The reliability of the CVM method is questionable and if orthodontic treatment should be initiated relative to the maximum growth, the use of additional biologic indicators should be considered (Tab. 4, Fig. 1, Ref. 24).
Resumo:
The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (d13Catm ), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of d13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 years BP). The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4 permil shift to heavier values between the mean d13Catm level in the Penultimate (~ 140 000 years BP) and Last Glacial Maximum (~ 22 000 years BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 years, but with different phasing and magnitudes. Furthermore, a 5000 years lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS 5.5 (120 000 years BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.