902 resultados para Maximal aerobic exercise


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose The purpose of the study was to investigate a possible association between the distance covered in the Hoff test with parameters of maximal oxygen uptake (V_O2MAX), anaerobic threshold, anaerobic fitness, and body composition of professional adult soccer players. Methods Twenty-five professional soccer players (20 ± 3 years) participated in the study. On different days the athletes performed: a graded incremental exercise test in a laboratory to measure V_O2MAX; a specific soccer field test called the Hoff test; a running anaerobic sprint test (RAST); an incremental test on an oval circuit to determine the velocity relative to anaerobic threshold (VAnT) and an estimation of body composition. Results The average V_O2MAX corresponded to 4.1 ± 0.1 L min-1 (54.1 ± 1.2 mL kg-1 min-1 ). The average distance covered during the Hoff test was 1,442.4 ± 30.0 m. The distance covered during the Hoff test showed significant correlations with absolute and expressed in an appropriated scale V_O2MAX (r = 0.44, p = 0.02; r = 0.42, p = 0.02, respectively) while no significant differences were found with body composition, VAnT and RAST variables. Conclusions The present study demonstrated that the distance covered during the Hoff test has weak correlation with V_O2MAX determined in treadmill running, and no correlation with VAnT, body composition and RAST outcomes, probably due to the non-specificity of the proposed tests when associated with the Hoff test.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective. - The aim of this study was to verify the relationship of aerobic and neuromuscular indexes with specific situations in judo. Method. - Eighteen male judokas took part in the study. The following assessments were performed: vertical jump (CMJ) on a force platform; Special Judo Fitness Test (SJFT) to obtain the number of throws and percentage of the maximal heart rate (%HRmax) one minute after the test; match simulation to obtain the peak blood lactate (LACmax) and the percentage of the blood lactate removal (BLR); incremental test to obtain the velocity at the anaerobic threshold (vAT) and peak velocity (PV) reached in the test. Results. - A significant correlation was observed between the number of throws in the SJFT, the vAT (r = 0.60; P < 0.01), PV (r = 0.70; P < 0.01) and CMJ (r = 0.74; P < 0.01). A significant inverse correlation was found between the LACmax and vAT (r = -0.59; P = 0.01). Conclusions. - It can be concluded that the performance in the SJFT was determined by the aerobic capacity and power and the muscle power. Athletes with greater aerobic ability (vAT) presented lower blood lactate accumulation after the match. (c) 2011 Elsevier Masson SAS. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background The aim of the present study was to investigate the relationship between speed during maximum exercise test (ET) and oxygen consumption (VO2) in control and STZ-diabetic rats, in order to provide a useful method to determine exercise capacity and prescription in researches involving STZ-diabetic rats. Methods Male Wistar rats were divided into two groups: control (CG, n = 10) and diabetic (DG, n = 8). The animals were submitted to ET on treadmill with simultaneous gas analysis through open respirometry system. ET and VO2 were assessed 60 days after diabetes induction (STZ, 50 mg/Kg). Results VO2 maximum was reduced in STZ-diabetic rats (72.5 ± 1 mL/Kg/min-1) compared to CG rats (81.1 ± 1 mL/Kg/min-1). There were positive correlations between ET speed and VO2 (r = 0.87 for CG and r = 0.8 for DG), as well as between ET speed and VO2 reserve (r = 0.77 for CG and r = 0.7 for DG). Positive correlations were also obtained between measured VO2 and VO2 predicted values (r = 0.81 for CG and r = 0.75 for DG) by linear regression equations to CG (VO2 = 1.54 * ET speed + 52.34) and DG (VO2 = 1.16 * ET speed + 51.99). Moreover, we observed that 60% of ET speed corresponded to 72 and 75% of VO2 reserve for CG and DG, respectively. The maximum ET speed was also correlated with VO2 maximum for both groups (CG: r = 0.7 and DG: r = 0.7). Conclusion These results suggest that: a) VO2 and VO2 reserve can be estimated using linear regression equations obtained from correlations with ET speed for each studied group; b) exercise training can be prescribed based on ET in control and diabetic-STZ rats; c) physical capacity can be determined by ET. Therefore, ET, which involves a relatively simple methodology and low cost, can be used as an indicator of cardio-respiratory capacity in future studies that investigate the physiological effect of acute or chronic exercise in control and STZ-diabetic male rats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] The tight relation between arterial oxygen content and maximum oxygen uptake (Vv(o2max)within a given person at sea level is diminished with altitude acclimatization. An explanation often suggested for this mismatch is impairment of the muscle O(2) extraction capacity with chronic hypoxia, and is the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4,100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial muscle O(2) extraction at maximal exercise was 90.0+/-1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O(2) extraction was 83.2+/-2.8% in the high altitude natives, and did not change with the induction of normoxia. The capillary oxygen conductance of the lower extremity, a measure of oxygen diffusing capacity, was decreased in the Danish lowlanders after 8 weeks of acclimatization, but was still higher than the value obtained from the high altitude natives. The values were (in ml min(-1) mmHg(-1)) 55.2+/-3.7 (SL), 48.0+/-1.7 (W2), 37.8+/-0.4 (W8) and 27.7+/-1.5 (Nat). However, when correcting oxygen conductance for the observed reduction in maximal leg blood flow with acclimatization the effect diminished. When calculating a hypothetical leg V(o2max)at altitude using either the leg blood flow or the O(2) conductance values obtained at sea level, the former values were almost completely restored to sea level values. This would suggest that the major determinant V(o2max)for not to increase with acclimatization is the observed reduction in maximal leg blood flow and O(2) conductance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] The purpose of this investigation was to determine the contribution of muscle O(2) consumption (mVO2) to pulmonary O(2) uptake (pVO2) during both low-intensity (LI) and high-intensity (HI) knee-extension exercise, and during subsequent recovery, in humans. Seven healthy male subjects (age 20-25 years) completed a series of LI and HI square-wave exercise tests in which mVO2 (direct Fick technique) and pVO2 (indirect calorimetry) were measured simultaneously. The mean blood transit time from the muscle capillaries to the lung (MTTc-l) was also estimated (based on measured blood transit times from femoral artery to vein and vein to artery). The kinetics of mVO2 and pVO2 were modelled using non-linear regression. The time constant (tau) describing the phase II pVO2 kinetics following the onset of exercise was not significantly different from the mean response time (initial time delay + tau) for mVO2 kinetics for LI (30 +/- 3 vs 30 +/- 3 s) but was slightly higher (P < 0.05) for HI (32 +/- 3 vs 29 +/- 4 s); the responses were closely correlated (r = 0.95 and r = 0.95; P < 0.01) for both intensities. In recovery, agreement between the responses was more limited both for LI (36 +/- 4 vs 18 +/- 4 s, P < 0.05; r = -0.01) and HI (33 +/- 3 vs 27 +/- 3 s, P > 0.05; r = -0.40). MTTc-l was approximately 17 s just before exercise and decreased to 12 and 10 s after 5 s of exercise for LI and HI, respectively. These data indicate that the phase II pVO2 kinetics reflect mVO2 kinetics during exercise but not during recovery where caution in data interpretation is advised. Increased mVO2 probably makes a small contribution to during the first 15-20 s of exercise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] The aim of this study was to determine the influence of activity performed during the recovery period on the aerobic and anaerobic energy yield, as well as on performance, during high-intensity intermittent exercise (HIT). Ten physical education students participated in the study. First they underwent an incremental exercise test to assess their maximal power output (Wmax) and VO2max. On subsequent days they performed three different HITs. Each HIT consisted of four cycling bouts until exhaustion at 110% Wmax. Recovery periods of 5 min were allowed between bouts. HITs differed in the kind of activity performed during the recovery periods: pedaling at 20% VO2max (HITA), stretching exercises, or lying supine. Performance was 3-4% and aerobic energy yield was 6-8% (both p < 0.05) higher during the HITA than during the other two kinds of HIT. The greater contribution of aerobic metabolism to the energy yield during the high-intensity exercise bouts with active recovery was due to faster VO2 kinetics (p< 0.01) and a higher VO2peak during the exercise bouts preceded by active recovery (p < 0.05). In contrast, the anaerobic energy yield (oxygen deficit and peak blood lactate concentrations) was similar in all HITs. Therefore, this study shows that active recovery facilitates performance by increasing aerobic contribution to the whole energy yield turnover during high-intensity intermittent exercise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] We aimed to test effects of altitude acclimatization on pulmonary gas exchange at maximal exercise. Six lowlanders were studied at sea level, in acute hypoxia (AH), and after 2 and 8 wk of acclimatization to 4,100 m (2W and 8W) and compared with Aymara high-altitude natives residing at this altitude. As expected, alveolar Po2 was reduced during AH but increased gradually during acclimatization (61 +/- 0.7, 69 +/- 0.9, and 72 +/- 1.4 mmHg in AH, 2W, and 8W, respectively), reaching values significantly higher than in Aymaras (67 +/- 0.6 mmHg). Arterial Po2 (PaO2) also decreased during exercise in AH but increased significantly with acclimatization (51 +/- 1.1, 58 +/- 1.7, and 62 +/- 1.6 mmHg in AH, 2W, and 8W, respectively). PaO2 in lowlanders reached levels that were not different from those in high-altitude natives (66 +/- 1.2 mmHg). Arterial O2 saturation (SaO2) decreased during maximum exercise compared with rest in AH and after 2W and 8W: 73.3 +/- 1.4, 76.9 +/- 1.7, and 79.3 +/- 1.6%, respectively. After 8W, SaO2 in lowlanders was not significantly different from that in Aymaras (82.7 +/- 1%). An improved pulmonary gas exchange with acclimatization was evidenced by a decreased ventilatory equivalent of O2 after 8W: 59 +/- 4, 58 +/- 4, and 52 +/- 4 l x min x l O2(-1), respectively. The ventilatory equivalent of O2 reached levels not different from that of Aymaras (51 +/- 3 l x min x l O2(-1)). However, increases in exercise alveolar Po2 and PaO2 with acclimatization had no net effect on alveolar-arterial Po2 difference in lowlanders (10 +/- 1.3, 11 +/- 1.5, and 10 +/- 2.1 mmHg in AH, 2W, and 8W, respectively), which remained significantly higher than in Aymaras (1 +/- 1.4 mmHg). In conclusion, lowlanders substantially improve pulmonary gas exchange with acclimatization, but even acclimatization for 8 wk is insufficient to achieve levels reached by high-altitude natives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] That muscular blood flow may reach 2.5 l kg(-1) min(-1) in the quadriceps muscle has led to the suggestion that muscular vascular conductance must be restrained during whole body exercise to avoid hypotension. The main aim of this study was to determine the maximal arm and leg muscle vascular conductances (VC) during leg and arm exercise, to find out if the maximal muscular vasodilatory response is restrained during maximal combined arm and leg exercise. Six Swedish elite cross-country skiers, age (mean +/-s.e.m.) 24 +/- 2 years, height 180 +/- 2 cm, weight 74 +/- 2 kg, and maximal oxygen uptake (VO(2,max)) 5.1 +/- 0.1 l min(-1) participated in the study. Femoral and subclavian vein blood flows, intra-arterial blood pressure, cardiac output, as well as blood gases in the femoral and subclavian vein, right atrium and femoral artery were determined during skiing (roller skis) at approximately 76% of VO(2,max) and at VO(2,max) with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise) and leg skiing (predominantly leg exercise). During submaximal exercise cardiac output (26-27 l min(-1)), mean blood pressure (MAP) (approximately 87 mmHg), systemic VC, systemic oxygen delivery and pulmonary VO2(approximately 4 l min(-1)) attained similar values regardless of exercise mode. The distribution of cardiac output was modified depending on the musculature engaged in the exercise. There was a close relationship between VC and VO2 in arms (r= 0.99, P < 0.001) and legs (r= 0.98, P < 0.05). Peak arm VC (63.7 +/- 5.6 ml min(-1) mmHg(-1)) was attained during double poling, while peak leg VC was reached at maximal exercise with the diagonal technique (109.8 +/- 11.5 ml min(-1) mmHg(-1)) when arm VC was 38.8 +/- 5.7 ml min(-1) mmHg(-1). If during maximal exercise arms and legs had been vasodilated to the observed maximal levels then mean arterial pressure would have dropped at least to 75-77 mmHg in our experimental conditions. It is concluded that skeletal muscle vascular conductance is restrained during whole body exercise in the upright position to avoid hypotension.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examined the effect of normobaric hypoxia (3200 m) on maximal oxygen uptake (VO2max) and maximal power output (Pmax) during leg and upper-body exercise to identify functional and structural correlates of the variability in the decrement of VO2max (DeltaVO2max) and of maximal power output (DeltaPmax). Seven well trained male Nordic combined skiers performed incremental exercise tests to exhaustion on a cycle ergometer (leg exercise) and on a custom built doublepoling ergometer for cross-country skiing (upper-body exercise). Tests were carried out in normoxia (560 m) and normobaric hypoxia (3200 m); biopsies were taken from m. deltoideus. DeltaVO2max was not significantly different between leg (-9.1+/-4.9%) and upper-body exercise (-7.9+/-5.8%). By contrast, Pmax was significantly more reduced during leg exercise (-17.3+/-3.3%) than during upper-body exercise (-9.6+/-6.4%, p<0.05). Correlation analysis did not reveal any significant relationship between leg and upper-body exercise neither for DeltaVO2max nor for DeltaPmax. Furthermore, no relationship was observed between individual DeltaVO2max and DeltaPmax. Analysis of structural data of m. deltoideus revealed a significant correlation between capillary density and DeltaPmax (R=-0.80, p=0.03), as well as between volume density of mitochondria and DeltaPmax (R=-0.75, p=0.05). In conclusion, it seems that VO2max and Pmax are differently affected by hypoxia. The ability to tolerate hypoxia is a characteristic of the individual depending in part on the exercise mode. We present evidence that athletes with a high capillarity and a high muscular oxidative capacity are more sensitive to hypoxia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Peak oxygen uptake (peak Vo(2)) is an established integrative measurement of maximal exercise capacity in cardiovascular disease. After heart transplantation (HTx) peak Vo(2) remains reduced despite normal systolic left ventricular function, which highlights the relevance of diastolic function. In this study we aim to characterize the predictive significance of cardiac allograft diastolic function for peak Vo(2). METHODS: Peak Vo(2) was measured using a ramp protocol on a bicycle ergometer. Left ventricular (LV) diastolic function was assessed with tissue Doppler imaging sizing the velocity of the early (Ea) and late (Aa) apical movement of the mitral annulus, and conventional Doppler measuring early (E) and late (A) diastolic transmitral flow propagation. Correlation coefficients were calculated and linear regression models fitted. RESULTS: The post-transplant time interval of the 39 HTxs ranged from 0.4 to 20.1 years. The mean age of the recipients was 55 +/- 14 years and body mass index (BMI) was 25.4 +/- 3.9 kg/m(2). Mean LV ejection fraction was 62 +/- 4%, mean LV mass index 108 +/- 22 g/m(2) and mean peak Vo(2) 20.1 +/- 6.3 ml/kg/min. Peak Vo(2) was reduced in patients with more severe diastolic dysfunction (pseudonormal or restrictive transmitral inflow pattern), or when E/Ea was > or =10. Peak Vo(2) correlated with recipient age (r = -0.643, p < 0.001), peak heart rate (r = 0.616, p < 0.001) and BMI (r = -0.417, p = 0.008). Of all echocardiographic measurements, Ea (r = 0.561, p < 0.001) and Ea/Aa (r = 0.495, p = 0.002) correlated best. Multivariate analysis identified age, heart rate, BMI and Ea/Aa as independent predictors of peak Vo(2). CONCLUSIONS: Diastolic dysfunction is relevant for the limitation of maximal exercise capacity after HTx.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AIMS Vent-HeFT is a multicentre randomized trial designed to investigate the potential additive benefits of inspiratory muscle training (IMT) on aerobic training (AT) in patients with chronic heart failure (CHF). METHODS AND RESULTS Forty-three CHF patients with a mean age of 58 ± 12 years, peak oxygen consumption (peak VO2 ) 17.9 ± 5 mL/kg/min, and LVEF 29.5 ± 5% were randomized to an AT/IMT group (n = 21) or to an AT/SHAM group (n = 22) in a 12-week exercise programme. AT involved 45 min of ergometer training at 70-80% of maximum heart rate, three times a week for both groups. In the AT/IMT group, IMT was performed at 60% of sustained maximal inspiratory pressure (SPImax ) while in the AT/SHAM group it was performed at 10% of SPImax , using a computer biofeedback trainer for 30 min, three times a week. At baseline and at 3 months, patients were evaluated for exercise capacity, lung function, inspiratory muscle strength (PImax ) and work capacity (SPImax ), quality of life (QoL), LVEF and LV diameter, dyspnoea, C-reactive protein (CRP), and NT-proBNP. IMT resulted in a significantly higher benefit in SPImax (P = 0.02), QoL (P = 0.002), dyspnoea (P = 0.004), CRP (P = 0.03), and NT-proBNP (P = 0.004). In both AT/IMT and AT/SHAM groups PImax (P < 0.001, P = 0.02), peak VO2 (P = 0.008, P = 0.04), and LVEF (P = 0.005, P = 0.002) improved significantly; however, without an additional benefit for either of the groups. CONCLUSION This randomized multicentre study demonstrates that IMT combined with aerobic training provides additional benefits in functional and serum biomarkers in patients with moderate CHF. These findings advocate for application of IMT in cardiac rehabilitation programmes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is estimated that more than half the U.S. adult population is overweight or obese as classified by a body mass index of 25.0–29.9 or ≥30 kg/m 2, respectively. Since the current treatment approaches for long-term maintenance of weight loss are lacking, the National Institutes of Health state that an effective approach may be to focus on weight gain prevention. There is a limited body of literature describing how adults maintain a stable weight as they age. It is hypothesized that weight stability is the result of a balance between energy consumption and energy expenditure as influenced by diet, lifestyle, behavior, genetics and environment. The purpose of this research was to examine the dietary intake and behaviors, lifestyle habits, and risk factors for weight change that predict weight stability in a cohort of 2101 men and 389 women aged 20 to 8 7 years in the Aerobic Center Longitudinal Study regardless of body weight at baseline. At baseline, participants completed a maximal exercise treadmill test to determine cardiorespiratory fitness, a medical history questionnaire, which included self-reported measures of weight, dietary behaviors, lifestyle habits, and risk factors for weight change, a three-day diet record, and a mail-back version of the medical history questionnaire in 1990 or 1995. All analyses were performed separately for men and women. Results from multivariate regression analyses indicated that the strongest predictor of follow-up weight for men and women was previous weight, accounting for 87.0% and 81.9% of the variance, respectively. Age, length of follow-up and eating habits were also significant predictors of follow-up weight in men, though these variables only explained 3% of the variance. For women, length of follow-up and currently being on a diet were significantly associated with follow-up weight but these variables explained only an additional 2% of the variance. Understanding the factors that influence weight change has tremendous public health importance for developing effective methods to prevent weight gain. Since current weight was the strongest predictor of previous weight, preventing initial weight gain by maintaining a stable weight may be the most effective method to combat the increasing prevalence of overweight and obesity. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of exercise electrocardiography (ECG) to detect latent coronary heart disease (CHD) is discouraged in apparently healthy populations because of low sensitivity. These recommendations however, are based on the efficacy of evaluation of ischemia (ST segment changes) with little regard for other measures of cardiac function that are available during exertion. The purpose of this investigation was to determine the association of maximal exercise hemodynamic responses with risk of mortality due to all-causes, cardiovascular disease (CVD), and coronary heart disease (CHD) in apparently healthy individuals. Study participants were 20,387 men (mean age = 42.2 years) and 6,234 women (mean age = 41.9 years) patients of a preventive medicine center in Dallas, TX examined between 1971 and 1989. During an average of 8.1 years of follow-up, there were 348 deaths in men and 66 deaths in women. In men, age-adjusted all-cause death rates (per 10,000 person years) across quartiles of maximal systolic blood pressure (SBP) (low to high) were: 18.2, 16.2, 23.8, and 24.6 (p for trend $<$0.001). Corresponding rates for maximal heart rate were: 28.9, 15.9, 18.4, and 15.1 (p trend $<$0.001). After adjustment for confounding variables including age, resting systolic pressure, serum cholesterol and glucose, body mass index, smoking status, physical fitness and family history of CVD, risks (and 95% confidence interval (CI)) of all-cause mortality for quartiles of maximal SBP, relative to the lowest quartile, were: 0.96 (0.70-1.33), 1.36 (1.01-1.85), and 1.37 (0.98-1.92) for quartiles 2-4 respectively. Similar risks for maximal heart rate were: 0.61 (0.44-0.85), 0.69 (0.51-0.93), and 0.60 (0.41-0.87). No associations were noted between maximal exercise rate-pressure product mortality. Similar results were seen for risk of CVD and CHD death. In women, similar trends in age-adjusted all-cause and CVD death rates across maximal SBP and heart rate categories were observed. Sensitivity of the exercise test in predicting mortality was enhanced when ECG results were evaluated together with maximal exercise SBP or heart rate with a concomitant decrease in specificity. Positive predictive values were not improved. The efficacy of the exercise test in predicting mortality in apparently healthy men and women was not enhanced by using maximal exercise hemodynamic responses. These results suggest that an exaggerated systolic blood pressure or an attenuated heart rate response to maximal exercise are risk factors for mortality in apparently healthy individuals. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Relación entre los cambios de las variable hematolóicas y la capacidad aeróbica